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Summary It is this type of high performance system that we 
are attempting to replace. 

A distributed control system has been designed 
as a possible replacement for the existing analog 
and digital interface equipment in use at the 
Fermilab 20G-MeV linear accelerator. In addition 
to replacing the present interface equipment that 
is no longer supported by the manufacturer, the 
goals for a new system include improved reliabil­
ity, easier maintenance and faster monitoring of 
accelerator parameters. About 15 local microcom­
puters, one for each major linac system, would be 
fabricated from commercially available Multibus­
compatible hardware. These local stations can op­
erate as stand-alone systems,providing control and 
readout of parameters to facilitate maintenance of 
the accelerator components. Values of all criti­
cal devices can be monitored at the accelerator 
repetition rate (15 Hz),so that beam may be inhib­
ited by any out-of-tolerance reading on a pulse­
to-pulse basis,to prevent unnecessary and damaging 
beam loss. 

One of our design criteria is to maintain the 
fast response and interactive nature of the exist­
ing system. The operation of a group of individ­
ual processors as a single integrated control sys­
tem depends on the type of communication link used 
to interconnect the local stations with the opera­
tor's console computer. For this link, the 
Synchronous Data Link control (SDLC) in the loop 
configuration was chosen. Using SDLC interface cir­
cuits with direct memory access controllers, arbi­
trary length blocks of binary data can be trans­
mitted and received at bit rates of 1 MHz. De­
tails of the hardware and software organization of 
this control system design will be discussed. 

IntroGuction 

The original Fermilab linac control system 
has been in operation for about 10 years. l Al­
though the system still operates well, the inter­
face equipment and the XS30 control computer are 
no longer supported by the manufacturer. A change 
of computer would necessitate a change in the 
interface equipment because this equipment is 
structured as an extension of Xs30 I/O bus. 
However, because the linac I/O is integrated into 
the console computer itself, it is a very fast 
system. The four linac digitizers are run simul­
taneously by the s30's I/O processor, placing data 
in memory under DMA control. Because of this 
capability, all the linac analog data (~ 800 chan­
nels) are collected for each accelerator cycle 
(15 Hz) so that current correlated data are always 
available to the application and monitor programs. 
Although binary data are not collected for each 
cycle, the status can be read as a single 6~s in­
struction by the program that needs the status 
information. 

tOperated by Universities Research Association, Irrc. 
under contract with the U. S. Department of Ener~ 

System Overview 

A new control system that is being designed 
today should almost certainly be built with small, 
modular, intelligent local stations, each control­
ling a part of the accelerator. Experience 
with such systems in the Fermilab Cancer Therapy 
Facility and Preaccelerator areas,has shown them 
to be extremely flexible and reliable additions to 
the control system. 2,3 The new design has a 
microprocessor controlled station for each system 
of the linac. The local stations are relatively 
straightforward. They include the processor, a 
small console, and the analog and digital inter­
face equipment. Each system is assembled from a 
collection of commercially available cards that 
are compatible with an industry standard bus 
structure,such as Multibus§. The more difficult 
part of the design,and the part that will deter­
mine the performance of the entire system,is the 
communication link that connects the local pro­
cessors to the console computer. The response of 
the console (or consoles) will depend in detail 
upon the transmission speed, the message handling 
overhead and the turnaround time for receiving 
data requested from local systems. 

It was decided to use a serial bit-oriented 
protocol,such as HDLC (High Level Data Link Con­
trol),to provide the communication to and from 
the local stations because it is fast; it is an 
industry standard4 ; it is supported by large-scale 
integrated transmitter-receiver circuits supplied 
by semiconductor manufacturers. The link overhead 
when using a DMA controller is low to allow the 
high performance required of the communication 
channel. 

HDLC is a superset of the original IBM bit­
oriented specification SDLC (Synchronous Data Link 
Control) protocol. s Both use the same message 
format, but SDLC contains some simplifications and 
includes a loop mode that is particularly useful 
for control systems. 

The SDLC Protocol 

Data is transmitted on a SDLC link in a for­
mat called a frame. All frames begin and end with 
a flag. Between the opening and closing flag, a 
frame contains an address field, control field, 
information field, and a frame check sequence as 
shown in Fig. 1. 

INFORMATION FIELD 
(ANY NUMBER OF BYTES) 

Fig. 1 SDLC Message Format 

§Multibus is a trademark of the Intel Corporation. 
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The flag character is the binary pattern 01111110. 
It provides the frame boundary and reference for 
the position of other fields within a frame. The 
address and control fields are each one byte long. 
The address byte is used by the primary station to 
direct a message to a particular secondary. When 
a secondary transmits a response, it includes its 
own address in the address field. The control 
byte identifies the type of message. The informa­
tion field may be any length (including zero)--it 
contains only data. The frame check sequence 
field is a two byte cyclic redundancy check (CRC) to 
test the integrity of the transmission. In this 
protocol,the link overhead is the same 6 bytes for 
any length message so that long blocks of data may 
be sent very efficiently. Only three special bit 
patterns are used: flag, abort (8 "ones") and in­
active idle (lj'one~'). All three are handled by 
the hardware. 

In the loop mode of operation,a link control­
ler or primary manages the message traffic on the 
loop. Data flow is always in the same direction 
around the loop and each station re-transmits the 
data it receives,so that messages sent from the 
controller are returned to the controller. 

Two characteristics of the loop mode are ex­
tremely useful for the present system: 1) a con­
troller can send data to all stations on the loop 
with a single transmission; and 2) with one poll 
sequence the controller can poll all the second­
aries and receive a message from each secondary in 
turn. This drastically reduces the link control­
ler overhead for most of the communication with 
secondaries. 

In the quiescent state,the loop contains a 
continuous stream of flag bytes. If a secondary 
receives no flag bytes for a period of time,it 
transmits a special message, called a beacon, to 
the primary. This flag timeout will occur if a 
problem developed in the link,or in a station on 
the link. When the beacon is received by the pri­
mary, the address contained in the beacon message 
is the location of the last station that is opera­
ting normally. This feature is useful for loca­
ting malfunctions on the loop. 

The SDLC protocol would be difficult to im­
plement if it were not for the LSI circuits that 
have been made available by several semiconductor 
suppliers. For this application the Motorola 
MC6854 data link controller was selected, operating 
in conjunction with the MC6844 DMA controller. 
Together they allow a processor to transmit and 
receive messages at a I-MHz baud rate under direct 
memory access. The processor need only set up 
pointers and byte counts and the rest of the work 
is done by the controllers. An interrupt is re­
ceived when the message transfer is complete. The 
link controller also performs the functions of 
flag detection, CRC generation and detection, and 
zero insertion-deletion--a technique that causes 
flags to be unique while allowing binary data to 
be transmitted. The transmitter inserts a zero 
after any succession of five l's within a frame 
and the receiver deletes any zero that folluws 5 

successive l's. Only when a flag, abort or inac­
tive idle is being sent will the controller permit 
more than 5 consecutive l's. This operation is 
handled entirely by the controller--the processor 
is unaware that the zero insertion and deletion is 
taking place. 

Hardware 

The individual microcomputers will be fabri­
cated from commercially available Multibus modules 
and card cages. Necessary cards that are not 
available will be designed and fabricated to com­
ply with the Multibus specifications. 

One card that will be fabricated is the 
CPU-Link card. This will be an MC6809-based sin­
gle board computer that will include the MC6854 
link controller and the MC6844 DMA controller. 
The card will also contain RAM, ROM, a program­
mable timer (MC6840) an asynchronous interface 
(MC6850) and a parallel I/O (2-MC682l). This com­
puter card is expected to become a general purpose 
building block. Because of the bus arbitration 
logic, an additional CPU can be inserted in a sys­
tem wh~re more capability is needed. For example, 
a second CPU card in the preaccelerator ground 
station will provide an SDLC link to the 75O-kV 
dome to operate the ion source electronics. 

The processor's programs and fixed data are 
programmed into UV erasable PROM memories. In 
this way the local stations can restart in an op­
erating state following a power outage. Descrip­
tor information and nominal and tolerance values 
for accelerator parameters need to be updated only 
occasionally. These data will be placed in non­
volatile magnetic core memory. 

Local Systems 

Each major linac system will be controlled by 
a small local microcomputer as shown in Fig. 2. 
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These will include a small console, loop inter­
face, A-D, D-A and binary I/O. 

A single Multibus card provides the opera­
tor's console interface. It contains a l6-line x 
32- character video display generator, a keyboard 
input, an incremental shaft encoder input with 
up-down counter, and three bytes of binary I/O 
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for miscellaneous sense switches and indicators. 

Loop Primary 

The primary station will control no hardware 
except for a small console that is used to monitor 
the operation of the communication system. The 
link controller can display the number and length 
of messages being transmitted and received each 
cycle, the time spent polling secondaries, link er­
ror rates, and link malfunction locations. 

Connection to Consoles 

The primary also connects to other computers 
that service consoles in the control room. To 
make the system separate from the console comput­
ers, that communication occurs through the use of 
shared memory as shown in Fi~ 3A. In a Multibus 
system,multiple processors automatically share 
memory because of the bus arbitration logic in­
cluded on the processor boards. A second method 
of sharing memory is possible through the use of a 
pair of commercially available Multibus-compatible 
two-port memory modules that connect two independ­
ent Multibus systems (Fig. 3B). 
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Fig. 3 Interconnection of Primary, 
Secondaries and Consoles 
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With this methOd, the system can be expanded to in­
clude additional Front End Communication Control­
lers each connected to the Console Communications 
Controller via separate shared memory. All con­
soles can then request data from any front-end 
communications controller in the network. 

In Fig. 3, the block labeled "Console" is 
usually some computer that executes application 
programs, operates console hardware and requests 

and receives data from the linac through the shar­
ed memory. The connection to the console computer 
may be SDLC, byte serial DMA or some other commu­
nication link. A small console could be driven 
directly by the microprocessor--that is, no pro­
cessor in the box labeled console. These various 
options are indistinguishable to the link primary. 
Each is simply a console,requesting data. 

The Physical Link 

Because the link is synchronous, a clock 
must accompany the data stream. This clock will 
be generated in the primary, transmitted around 
the loop and returned to the primary. The clock 
and data will be encoded and transmitted as a sin­
gle, self-clocking signal using either biphase or 
Manchester format. Connection between chasses can 
be RS422, transformer coupled or fiber optic. The 
link driver-receiver electronics may be built 
as a separate chassis to allow loop bypass for an 
off-line station that is powered down. 

System Operation 

Functions of the Primary 

The primary station is, in a very real sense, 
the loop controller. No data are placed on the 
link unless the primary initiates or solicits the 
transmission. Secondaries transmit only when pol­
led, transmit only the data requested in the poll, 
and only one message per poll. In this way the 
primary can maintain a synchronous character to 
the link traffic. When a response is received, it 
is the answer to a specific question, not an arbi­
trary message initiated asynchronously from an au­
tonomous secondary. This tight control exercised 
by the primary implies that a poll sequence must 
be sent to solicit all of the possible responses 
from the secondaries. This is feasible because 
programs for the secondaries are static; that is, 
it is not intended that code will be sent to a sec­
ondary for execution. This possibility is not ex­
cluded by the design and could be incorporated for 
some other application if needed. 

Functions of the Secondaries 

Secondary stations perform the task of data 
acquisition and monitoring for the local hardware. 
Each cycle, the secondary digitizes all the analog 
data and reads the digital status from the hard­
ware so that a current data pool is available in 
the secondary. Then the secondary prepares groups 
of data to return to the primary. When this work 
is completed, the processor executes the applica­
tion program to service the local console and up­
date the video display. 

Link Messages 

This section describes the organization of 
the messages transmitted on the link to show how 
the individual stations and the link controller 
operate to collect the data required by the con­
soles. Three separate types of message traffic 
occur on the link. 
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Single-Terminal-Address Messages 

When the primary station has an individual 
message to be sent to a controller, that message 
will contain the address of the target secondary 
station. This type of message is used to transmit 
settings to selected local hardware or to ask for 
data that is located only in that station, such as 
a memory dump. As in all other transmissions, the 
response from the secondary station must await the 
poll sequence from the primary. 

AII-Parties-Address Transmission 

The all-parties address is used when the pri­
mary intends to send data to all secondaries si­
multaneously. Through the use of this transmis­
sion, the primary can assemble a group of readings 
collected from the present beam pulse and, with a 
single transmission, place these data in the mem­
ory of all stations on the loop. A nominal list 
of data will be sent each cycle so that each sec­
ondary will contain a "remote data pool" of select­
ed readings from other stations. Then, for exam­
ple, the Tank 4 system can display a summary of 
the linac operation without requesting data from 
the primary. 

Poll Sequences 

The poll command instructs stations to pre­
pare to send data to the primary. The poll com­
mand will include an information field to allow 
the primary to select the type data to be sent. 
This is normally just the list ID number that had 
been sent at some earlier time. Many of the poll 
commands will be directed to the all-parties ad­
dress (addr FF) and each station then prepares to 
send its contribution, if any, to the requested 
data list. Single-terminal-address poll commands 
can also be used to solicit response from a single 
secondary. 

Several poll sequences will be dOne each 
cycle to request a variety of information: A-D 
data, out-of-tolerance parameters, secondary sta­
tion status, etc. 

List Organization 

The primary communicates with the console and 
with the secondaries in terms of "lists". Data 
needed by the console, called a "request" list, is 
presented to the primary as a random list of chan­
nel numbers. When the data are acquired,a parallel 
"answer" list is assembled to return the data 
to the console in the order it was requested. 
Each channel in the request list has an index num­
ber that is simply the location of that channel 
within the list. In the course of retrieving the 
data, secondary lists are generated, containing 
the index numbers, requested channel numbers and 
the answers grouped according to the linac station 
where the data originate. 

A console request is serviced as follows: 
the primary receives the request list, gives it a 
list ID number and sends it to the secondaries 

using the all-parties address. All secondaries 
search the list for channel numbers they recognize 
and construct their own secondary request list and 
a secondary index list. Each machine cycle the 
secondary station goes through its request list 
and builds an answer list from readings in its 
data pool. The primary will poll once for the 
secondary index lists and poll each cycle for the 
secondary answer lists. When the primary performs 
the index poll,it will receive all of the second­
ary index lists grouped by secondary stations in 
the order the secondaries are connected to the 
loop. When the primary polls for the answer list 
(which it does at 15 Hz),the secondary answer list 
will be in exactly the same order as the index 
list. The primary can then use the entries in the 
index list as pointers to the console answer list 
for returning the data to the console. 

Using the technique described here, neither 
the console nor the primary needs to know which 
secondary is responsible for measuring each data 
channel; the secondary itself can recognize its 
own channels and respond accordingly. Also the 
primary does not know (or need to know) how many 
stations will respond or how long their response 
will be. The primary simply receives messages 
till the poll is finished. Secondary stations may 
be added to or taken from the loop without chang­
ing the primary's software. New data channels 
would become active automatically; data channels 
that are not recognized by any secondary would 
simply not be updated. This sequence is repeated 
for other consoles or requestors. Note that a 
requestor may be a secondary station on the loop. 
By this mechanism a local station can request data 
from any other station on the loop, so that the 
operator at any secondary could select a display 
that would show, for example, the gradient of all 
nine linac tanks along with the preaccelerator 
high voltage and source pressure. By keeping the 
lists separate for each requestor, the primary can 
cancel a given list with a single short transmis­
sion to the secondaries. The addition or cancel­
lation of one list has no effect on other lists. 

In normal operation the lists are relatively 
static, changing on the order of seconds or long­
er. When the operator calls up a new display, 
that act will usually result in the cancellation 
of an old list and the generation of a new one. 
The new list will remain active as long as the 
console display is selected. It makes little dif­
ference to the secondary if a given list is 
polled on a given cycle or not. The primary can 
choose to poll certain lists less frequently, such 
as only on beam cycles. Answer lists in the sec­
ondaries would be overwritten with new data each 
cycle in any case. Servicing the poll sequences 
is done at an interrupt level so that monitoring 
of the data can proceed at the background level. 

Timing Considerations 

To achieve the interactive feel of the con­
trol room consoles, careful attention must be 
given to servicing the console requests immediat~ 
ly. With the system described here, it is felt that 
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a console request list presented to the primary 
during one cycle will be transmitted to the second­
aries during the same cycle and data will be 
polled from the secondaries on the next and all suc­
ceeding cycles. Settings sent to the primary will 
be passed on to the secondary on the same cycle, 
and changes in the hardware will reflect the 
changed settings on the next cycle. 

Detailed timing is calculated assuming the 
instruction set of the MC6809 CPU. This processor 
is now available and is particularly adept at 
handling lists of data and addresses. The primary 
station can service one message and be ready for 
the next message in about 100 ws. To this one must 
add 50 WS for the transmission time of the six 
bytes of SDLC protocol,so the message overhead is 
about 150 WS per responding secondary. For a poll 
that results in 10 secondaries returning 50 bytes 
of data, the total time of the poll is less than 
2 ms. Even if 10 such polls were conducted each 
cycle, only 20 ms of the 67 ms cycle would be 
needed for collection. The time to sort the data 
for return to the console in the order requested 
is 20 WS per channel. 

An application program that plots all the 
linac quadrupole currents at 15 Hz, results in a 
request for 171 words (342 bytes) of data. This 
request takes 4.3 ms to collect and 3.4 ms to sort, 
for a total of only 7.7 ms. These times indicate 
that the system is fast enough to service several 
consoles at 15 Hz. 

Present Status 

Although no decision has been made regarding 
a replacement for the linac control system, we are 
implementing this system to the point that a link 
controller will communicate with several second­
aries and with a separate processor that supports 
an operator's console. At this stage we can con­
firm the timing calculations and study the integ­
rity of the SDLC loop communications. 

A local console described here has been fab­
ricated using Multibus card cages and commercially 
available A-D, D-A, memory and binary I/O cards. 

The console controller card,including the Video 
l~ display, keyboard, shaft encoder interface and 
two bytes of sense switches and status indicators, 
has been prototyped. This console is now being 
used to control the negative ion source in the 
terminal of the second Fermilab preaccelerator. 

The SDLC-DMA link has been operated at 1 MHz 
and has shown that messages can be sent error 
free from one processor to another. A Multibus 
single board computer card that includes the 
MC6809-SDLC-DMA combination is being fabricated. 

The distributed control system described here 
is a reasonable replacement for the existing linac 
control system. The I-MHz SDLC loop is fast 
enough to collect all the data in a single cycle, 
although we expect to transmit only the data re­
quested by the consoles. Limit checking and soft­
ware closed loops will be done in the local sta­
tions. Because of the modularity and local con­
sole facilities, the system should be much easier 
to maintain than the existing system. 
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