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Summary 

The radio-frequency quadrupole (RFQ) linac 1 is 
capable of accelerating high-current, low-velocity 
ion beams. In accelerator systems comprising an 
RFQ and higher velocity accelerating structures, 
the current bottleneck still typically occurs with
in the RFQ. This limiting current is quite high 
in most cases, but linacs with even higher currents 
may be required in the future. We have begun a 
study of higher multipole systems to determine 
their capability for focusing and accelerating very 
high currents. We have chosen first to examine a 
radio-frequency octupole (RFO) transport system, 
and have developed a smooth-approximation analyti
cal description that includes the conditions for 
input radial matching of a zero space-charge beam. 
Further, we have constructed a multiparticle beam
dynamics simulation program that accepts the low
current matched beam and gradually increases the 
beam current as it is transported. This results 
in a matched high-current beam, and the procedure 
can be used to determine the saturation-current 
limit of a periodic octupole system. As expected, 
at high currents the beam develops a hollow radial 
distribution that reduces the space-charge defocus
ing; initial results show that high currents can 
be transported. For acceleration, we have formu
lated the design parameters for a section of RFO 
linac, including the potential function, accelera
tion, and focusing efficiencies, and the geometry 
of the radially modulated pole tips. 

Introduction 

We begin our study with an examination of the 
equations of motion for an RFO transport system. 
In the static limit, otherwise described as a 
quasi-static approximation, an octupole scalar 
potential can be written in cylindrical coordinates 
(r, '1', s) as 

V r 4 
U = 2 (a) cos 4'1' sin wt (1) 

where Vis the peak potent i a 1 difference between 
adjacent poles, w is the angular frequency of 
the time-varying voltage on each pole, and a is 
the radial aperture (see Fig. 1). Instead of time 
we use z = s/L as the independent variable, where 
L = 2nv/w and v = ds/dt. We obtain for the nonrel
ativistic equations of motion 

x" + B (x3 - 3xy2) sin 2n z = 0 (2) 

and 

y" + B (y3 - 3yx2 ) sin 2nz o (3) 
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Fig. 1. Radio-frequency octupole cross section 

(unmodulated vanes). 

where for a particle of charge q, and mass m, we 
define 

B = :~~ (~y (4) 

The displacements x and yare dimensionless quanti
ties, defined as the ratio of the actual displace
ment to the focusing period L. We use the conveni-

ent notation that x" = d2x/dz2 and y" = d2y/dz2. 

The RFO Smooth-Approximation Solution 

By analogy, with the smooth-approximation 
method for quadrupole focusing," we assume solu
tions of the form 

x 

y 

X( 1 + u) 

Y( 1 + w) 

(5 ) 

( 6) 

where the functions X and Y, and their first and 
second derivative, are assumed to vary slowly 
enough to be considered constant over a period L. 
As with x and y, we define X and Y to be the dimen
sionless ratios of actual displacement to the peri
od L. The functions u and ware assumed to be pe
riodic with period L, and both u«l and w«l. 
Furthermore, the mean va 1 ues over a ce 11 of u and 
w, and their first and second derivatives, are 
assumed to vanish. Thus, the solution is assumed 
to consist of a product of a slowly varying func
tion times a rapidly varying periodic function. 
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The slowly varying functions X and Y constitute 
what may be ref erred to as the smooth so 1 ut i on. 
After substituting the assumed solutions Eqs. (5) 
and (6) into the equations of motion Eqs. (2) and 
(3), and using the above approximations, we have 
obtained 

B (X 2 _ 3y2) sin 27TZ u = ---
(271)2 

(7) 

and 

B (y2 _ 3X2) sin 271z w = ---
(271)2 

(8) 

Then, substitution of Eqs. (7) and (8) into the 
equations of motion averaged over a period, yields 
smoothed differential equations in X and Y: 

X" + GX(X2 + y2)2 = 0 

and 

Y" + GY(X2 + y2)2 = 0 

where G is given by 

G 3B2 

871 2 

( 9) 

( 10) 

( 11) 

The equations of motion are coupled in gen-
eral. For motion in the x,z plane, the smoothed 
uncoupled equation of motion is 

X" + GX5 = 0 ( 12) 

This equation can be integrated twice to give an 
equation for smoothed phase advance per focusing 
period, ao, of uncoupled motion, which is 

BX2 
m a =--

o ~ f' 
( 13) 

where Xm is the smoothed amp 1 itude. The symbo 1 

f represents a ratio of gamma functions; the 
numerical value is given approximately as 

f = f(7/6) r(1/2) 
r(213) '" 1.2143 ( 14) 

From Eq. (13) we see that the phase advance depends 
not only on the focusing strength B, but also on 
the particle amplitude Xm' 

We have compared the predictions of Eq. (13) 
with the phase advance obtained by using zero 
crossings of the numerical integration of Eq. (2) 
for uncoupled motion (y = 0), and find that the 
smooth approximation predicts the uncoupled phase 
advance to within a few per cent for phase-advance 
values up to 30°. The rlumerical-integration 
results also show that the uncoupled motion becomes 
unstable for phase-advance values equal or near to 
30°, a result that has been independently dis
covered by Laslett.* 

*L. J. Laslett, Lawrence Berkeley National Labora
tory, personal communication, July 1981. 

The RFO Current Limit 

We have searched for a simple model for a 
smoothed charge distribution within the beam, 
which we can use to represent the beam in an 
extreme space-charge regime. In the following 
discussion we present the motivation behind this 
model, as well as the resulting formulas. 

The smoothed equation of motion can be 
expressed in cylindrical coordinates. If a 
smoothed radial coordinate R is defined by 

R2 = X2 + y2, then the smoothed radial equation of 
motion for a particle, subjected only to the 
applied octupole force, can be written as 

R" - ( 15) 

where J is a constant of motion, proportional to 
the angular momentum. The second term constitutes 
a centripetal force, and the third term represents 
the applied octupole force. To represent the 
effect of the internal space-charge defocusing, we 
assume that an additional smoothed space-charge 
term, which depends upon R, can be added to 
Eq. (15). In an extreme space-charge 1 imit, where 
the space-charge defocusing is barely balanced by 
the applied octupole focusing force, we assume 
that the first two terms can be ignored. Then we 
might expect that the beam charge would distribute 
itself, so as to minimize the free energy, by gen
erating a space-charge term, which is balanced by 
the third term in Eq. (15) (the appl ied octupole 
force) • 

We are then led to assume a cylindrically 
symmetric charge model, where the smoothed space 

charge term has the same R5 dependence as does 
the applied force. Gauss's law can be applied to 
the charge distribution, to yield an expression for 
the radial space-charge electric field given as 

E 
271e vR 6L o m 

( 16) 

where lis the beam current and R is the max i-
m 

mum smoothed amplitude (the smoothed beam radius). 
The charge density is given as 

( 17) 

This charge density is zero at R = 0 and increases 
strongly with radius R. 

Within the context of this model, the smoothed 
equations of motion, (9) and (10), are modified to 
give 

X II + G (1 - 11) X (X 2 + Y 2) 2 = 0 ( 18) 

and 

yll+G(1-11)Y(X2+y2)20 ( 19) 
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where 

lJG = 
3 

qIZof (~)6 
2lTmc2B3 a 

(20) 

and lJ is interpreted as a rat i 0 of s'pace charge 
to focusing force. We have introduced B = vic, and 

-1 Zo = (soc) is the impedance of free space. To 

evaluate a current limit, the smoothed beam radius 
Rm is re-expressed in terms of the radial aperture 

as 

R 2 _ i 
m - f (21 ) 

where f is a flutter factor that depends on the 
particle coordinates, but that we have approximated 
as 

2 

+ B\hl) 
1 - B(2~L)2 

f (22) 

Equation (20) can be solved for the current I, and 
Eqs. (4) and (11) can be used to obtain 

I = 3glJ (L V)2 
lTZ mc 2Bf3 \.a 

o 

(23) 

which expresses the current in terms of the ratio 
of the voltage to the radial aperture and in terms 
of lJ. It may be convenient to write the current 
in terms of the zero-current phase advance per 
focusing period for uncoupled motion. When this 
is done, we obtain 

I = 24lJmc2B3 (raoo\2 
lTZoqf L-; 

(24) 

As lJ approachs 1, Eqs. (23) and (24) give expres
sions for the peak current, limited by the focus
ing. Equation (23) is useful when the peak surface 
electric field limits Via, and Eq. (24) is useful 
if the uncoupled phase advance 00 is fixed. 

The RFQ Transport Equations 

The methods, applied above to the rf octupole 
transport sys tem, a 1 so can be app 1 i ed to the RFQ 
system. The analogous equations of motion are 

x" - B(sin 2lTz)x = 0 (25) 

and 

y" + B(sin 2lTz)y 0 (26) 

where 

(27) 

The smooth approximation is 

x=X(l-u) (28) 

and 

y = Y(l + u) 

where 

u = _B_ sin 2lTZ 
(2lT)2 

The smoothed variables X and Y satisfy 

2 X"+ 00 X 0 

and 

2 Y" + 00 Y = 0 

(29) 

(30) 

( 31) 

(32) 

where 00 is the smoothed phase advance per 
focusing period given by 

2 _ B2 
°0 - 8lT2 

(33) 

The space-charge effect is represented by a uniform 
cylindrically symmetric charge distribution. In 
this model the smoothed equations of motion, in
cluding space charge become 

(34) 

and 

Y" +00
2(1 -lJ)Y 0 (35 ) 

where 

° 2lJ = qIZof (~)2 
o 2 2B3 a lTmc 

(36) 

The flutter factor f is given as 

B 
+~2 

B f (37) 

- (2lT)2 

The quadrupo 1 e express ions for beam current, cor
responding to Eqs. (23) and (24) for the octupole 
system, are 

(38) 

and 

(39) 

Multiparticle Simulations 

Computer simulations were performed to check 
the analytical predictions and to help understand 
the particle dynamics. The matched particle dis
tribution (for zero space charge) for the octupole 
can be calculated, using the "smooth" Hamiltonian. 
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The smooth coord i nates (X, X', Y, Y') are chosen 
at random and the Hamiltonian is calculated. If 
the Hamiltonian is less than a specified value, the 
smooth coordinates are retained and converted into 
actual phase-space coordinates at a specified time 
in the rf octupole period. If the resultant coor
dinates are transformed through many rf periods, 
the distribution is indeed observed to be matched. 

A matched beam that includes space-charge 
effects is generated by starting with a matched 
zero-current beam, and gradually increasing the 
charge assigned to each macroparticle until a spec
ified value is reached. The charge then is held 
constant, and the beam is transported through many 
rf periods to obtain a final transmitted current. 
The initial size of the beam, and the rate at which 
the current is increased, are adjusted to find a 
current limit. 

We have chosen a set of parameters for evalu
ation of the octupole transport formulas. We chose 
l-MeV protons, a l-GHz frequency, a 34-kV intervane 
voltage, and a ratio of radial aperture to focusing 
period, all = 0.1. The zero-current phase advance, 
calcu lated from Eq. (13), is 24.6 0 at the pole tip. 
A computer run was made with 360 initial particles. 
Table I summarizes the current limits obtained from 
the computer simulation and from Eq. (23). The 
current 1 imit from the f ormu 1 a has been obta i ned 
by tak i ng 11 = 1. 

Table I 

A COMPARISON OF CURRENT lIMITS FOR 
THE OCTUPOlE CHANNEL 

I (A) 
(from formula) 

4.0 

I (A) 
(computer simulation) 

2.6 

The computer simulation value is '\,35% lower 
than the value predicted by the formula. We 
believe the most likely explanation for the dis
crepancy to be either (1) a poor approximation for 
the flutter factor (Eq. 22), which enters in a 
sensitive way (as the cube) in Eq. (23), or (2) a 
possible restriction on the zero-current phase 
advance, related to instabilities, which might 
affect the computer simulation. 

The RFO Accelerator 

An RFO accelerator can be described by the 
following potential function: 

V r 4 
U = "2 [X(a:) cos 4\j1 

+ A I (kr) cos kzJ sin (wt + <b) o (40) 

Figure 2 shows the coord i nate system, where the 
coordinates x and z now have dimensions of 
length. The quantity 10 is the modified Bessel 

function and k = 211/5\. The electric field 
components are 

E 
r 

EIjI 

and 

E z 

2XV r3 kAV - -4- cos 41j1 - -2- Il(kr) cos kz 
a 

_ 2XV 3 sin 41j1 - -4- r 
a 

= kAV I (kr) 
2 0 

sin kz 

each multiplied by sin (wt + <b). 

(41 ) 

(42) 

(43) 

The acceleration efficiency factor A is given 
by 

A (44) 

where m is the vane modulation parameter, shown in 
Fig. 2. The focusing-efficiency factor X is given 
by 

(45) 

As in the RFQ, the space average longitudinal elec
tric field is proportional to the acceleration 
efficiency, and is given by 

(46) 

We find that for the RFO, there is considerably 
more accelerating field produced for a given value 
of m, than for the RFQ. 

The pole-tip geometry, which corresponds to 
the potential function, can be obtained in the same 
way as for the RFQ.3 In the middle of the unit 
cell, where z = 5\/4 (Fig. 2), there is octupole 
symmetry in the transverse plane. In this symmetry 
plane all eight pole tips have radius ro' and their 

radius of curvature is ro/3, where ro = a/\{X. 

Conclusions 

We have obtained formulas for an RFO beam 
transport system and an RFO accelerator and have 
tested the predictions of a space charge defocusing 
model against a multiparticle simulation. At high 
beam currents the s imu 1 at i on shows that the beam 
wi 11 develop a hollow radial distribution, which 
agrees qualitatively with the model. 
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Fig. 2. Radio-frequency octupole pole-tip geometry. 
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