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Summary 

For the llGeV-100 mA Spallation Neutron Source 
SNQl operation costs and beam losses ask for the 
possible potential of rf control improvements. Two 
novel methods are investigated. 

First, in order to increase the overall rf 
effici ency 2, the cavity field is built up as fast as 
possible in the open loop state of feedback control 
and in detuned position of the cavity in such a 
manner that the cavity with beam is matched to the 
generator. It is shown that this requires the simul
taneous application of a generator amplitude and a 
generator phase step. 

Secondly, a feedforward control system is proposed, 
which reduces the amplitude and phase control error 
caused by an arbitrary beam transient into the limits 
of ± 0.1 % and ± 0.10 and maintains these error 
limits also in the presence of parameter drift. This 
is done by an adaptive parameter adjustment procedure 
using a digital model of the control system. The sys
stem structure and a promising digital simulation 
are discussed. 

Equivalent circuit 

The well-known rf equivalent circuit of a beam 
loaded cavity 3 in figure 1 a is transformed for the 
general case of detuning to a dynamic equivalent 
circuit in figure 1 b for the complex amplitude (am
plitude and phase), which is useful for control appli
cations. Figure 1 b represents a sufficiently good 
approximation for high Q-values under the assumption: 
Gill = 1 and 1 = n • A/2. The detuning is lIw=w-1/IIT, 
6 is the coupling factor and b the beam loading fac
tor defined as ratio of the real beam power to the 
cavity losses. Because of the particle phase shift 
¢s the beam admittance is complex. The decay time of 
the unloaded cavity is given by To = 2 C/G. 
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Fig. 1: Equivalent circuits of the beam loaded 
cavi ty 

The condition of power matching of the generator ad
mittance 6 • G to the beam loaded cavity admittance 
leads to the equations: 

6 = 1 + b 

2l1wC = - bG 

( 1) 

(2 ) 

With the decay time of the loaded cavity Tl = To/(1+6) 
it is conveni ent to express the detuni ng by the trans
mission phase 8: 

tan8 = - lIw • \ = b/(b + 2)· tan¢s (3) 

It is obvious, that the generator amplitude IIgol, 
which produces the field level lUI in the beam loaded 
case is larger than IIg11, which is necessary to 
generate the same field level without beam. 

Using the admittance ratio and the formulas above we 
obtai n: 

IIgo/Ig 11 = 2 (b + l)/(b + 2) • cos 8 (4) 

Exactly this generator amplitude margin can be used 
to shorten the filling time of the cavity, 

Dead beat filling 

Unlike in the resonance case, in the detuned cav
ity adjustment the forced and the eigensolution have 
different frequencies. Therefore, a frequency beat 
occurs and no steady state can be obtained at t < 00. 

Is it possible to cancel this beat? From figure 1 b 
one can conclude that the step response of the first 
order differential equation with complex coefficients 
must be an exponential function with complex argument: 

U(t) = Uo (1 - exp(- t/Tl (1 - j tan 8))) (5) 

A typical step response is plotted in figure 2 a. At 
the time TF - the filling time - the generator ampli
tude is switched from IIgol to IIg11 and no parameter 
combination can be found, which makes the steady state 
at TF possible. But, if one adds a certain generator 
phase step simultaneous to the amplitude step, again 
like in the resonance case (shown in figure 2 c for 
comparison) the steady state can be reached at TF as 
it is illustrated by figure 2 b. 

Applying the theory of "dead beat response" the fol
lowing condition holds: 

Igo/I9 1 = 1/(1 - exp(- TF/Tl (1 - j tan 0))) (6) 

The phase angle of Igo/I9 1 is the phase step lI¢ in 
figure 2 b: 

( 7) 

For a given amplitude margin Igo/I91, which depends 
on the beam loading factor, there is only one possible 
value for the filling time TF and the phase step lI¢, 
which fulfill the dead beat condition. 
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Fig. 2: Cavity amplitude response to a generator 
step excitation 

a: detuned - amplitude step only 
b: detuned - amplitude and phase step 
c: resonant 

In figure 3 the quantitative relations between filling 
time, amplitude and phase step and beam loading fac
tor are plotted for a synchronous phase ¢s = - 300. 
The maximum possible phase step occurs at high beam 
loading and reaches about 2/3 of the synchronous phase 
¢s· 
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Fig. 3: Phase step, amplitude step and filling time 
vs beam loading factor b 

Typical parameters for the SNQ disk-and-washer struc
ture at vic = 0.7 and ¢ = - 300 are 
b = 0.8, To = 57 llsec, TF = 30 llsec, IIg o/1911 = 1.27 
and 6¢ = 4 degrees 5

• 

Up to now we have considered the cavity in the open 
loop state of the feedback system. Before the beam 
enters the cavity the amplitude and phase feedback 
loops have to be closed, whi~h might cause a minor 
transient because of misadjust~ent. Therefore, in 
practice the total time consumption from rf turn-on 
is somewhat larger than the calculated filling time. 

It should finally be mentioned, that the generator 
impedance differs from the line impedance ZL and 
there mi ght be reasons to choose the 1 i ne 1 ength 
1 f n • A/2. This more general case can also be treat
ed with the dead beat response method presented above. 
The necessary phase and amplitude step will depend 
then on Gi and 1, but no fundamental change of the 
results are expected. 

Feedforward control (FFC) 

It is state of the art in proton linear accele
rators with heavy beam loading to support the ampli
tude and phase feedback 100ps 6,7,s by a feedforward 
signal derived from the beam 9

• 

Our concept is based on the assumption of the most 
severe beam transient, a step function. If the field 
error in this case can be tolerated, the control sys
tem would be even more efficient for all other real 
beam transients. The feedforward pulse shape can only 
be a step function, which is simply generated by a 
pulse generator and is fed to the amplitude/phase 
modulator. Because the FFC pulse rise time is increas
ed afterwards by the power transmitter, a complete 
compensation of the transient beam loading is not 
possible. 

A computer simulation for the SNQ amplitude/phase 
control loop with a PID controller results in a 
maximum dynamic cavity amplitude error of - 2.5 ,1'5 

if only feedback is used. A reduction to 0.6 can be 
obtained, if a FFC pulse with proper amplitude is fed 
synchronous to the beam pulse into the modulator. This 
case is illustrated by the lower curve in figure 4. 
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Fig. 4: Computer simulation of the dynamic amplitude 
control error caused by a beam transient for 
different delay time of the feedforward (FFC) 
pulse 

A further drastic reduction can be obtained, if the 
FFC pulse and thereby the klystron power is raised 
before the beam enters the cavity. At an optimum 
leading time of 0.25 llsec the resulting error is 
within the desired ± 0.1 ~ limits (figure 4: middle 
curve). If the leading time becomes too large, again 
the error is increasing (upper curve). 

The ± 0.1 % error limits discussed above are achieved 
in the LAMPF accelerator by slowing down the beam 
trans i en t. 
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These digital simulation results had been confirmed 
also by an analog model of the feedback loopll. 

The simulation proves that the combined use of feed
back and feedforward stabilizes the rf field suffi
ciently against the expected beam disturbances. 
Figure 4 shows on the other hand the large sensiti
vity of the error on the delay time. A drift of less 
than 100 nsec causes the error to increase by a fac
tor of 2. Therefore, an absolute condition for an im
proved feedforward control is the elimination of para
meter drift by an automatic adjustment procedure. 

Adaptive parameter adjustment 

The proposed adjustment procedure is based on two 
technical developments, the availability of fast 
transient recorders with sufficient resolution and 
low cost digital processors. 

The solution is outlined in figure 5. The control sig
nal sample is picked up from the "real world" by a 
transient recorder. The equivalent signal calculated 
by the computer model of the control system is changed 
by means of a multidimensional parameter optimization 
as long as it fits well enough to the real signal. 
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Fig. 5: Block diagram of the adaptive parameter 
adjustment procedure 

r-

This new parameter set is used either for correction 
of the FFC pulse generator (delay and amplitude) or 
for marginal checking (loop gain and stability etc.), 
if control loop parameters had been changed. The ad
vantage of this scheme is that only one sample of the 
"real world" is necessary and the adaption takes 
place completely in the "computer world". Obviously, 
the quality of the adaption depends on the quality of 
the computer model, the digital simulation. 

Digital simulation 

The digital simulation must represent sufficiently 
the dynamic structure of the control loop, which is 
here approximately an 8th order system with delay. The 
execution time of one simulation cycle determines the 
number of periodic beam bunches, which pass the cavity 
until the parameter correction takes place. This last 
requirement favors direct methods against such trans
formation methods as Fast Fourier Transformation (FFT) 
or the State Space Transformation or the timewasting 
method of convolution integrals. 

The most appropriate direct method seems to be the 
transfer of the differential equation system into an 
approximate system of difference equations that are 
solved successively. In addition, with this method 
the time delay can be treated exactly. 

In figure 6 a the normalized representation of a Nth 
order dynamic system with delay and feedback is shown 
in Laplace notation, where the integration operator 
occurs as l/s. 

The nominator coefficients ak and the denominator 
coefficients bk are easily obtained from the time 
constants of control plant and the PID controller. 

There are several well-known approximations of the in
tegration operator l2 , which can be expressed in terms 
of the z-transform as follows: 

1. "h (1 + Pm (z)) 
s m 1-z-m (8) 

with the definition of the z-transform z = exp(- T· s), 
T is the sample time and m the order of approximation. 
For explanation of (8) two examples are given: 
m = 1 the trapezoidal rule with Pm(z) = z-l and 
hm = T/2 , m = 2 the Simpson rule with Pm(z) = 
4z- 1 + z-2 and hm = T/3. 

In order to get a successively solvable system of 
difference equations, the system of figure 6 a under 
use of equation (8) must be reorganized in 
such a way, that the state variable XN-1(z) depends 
only on the other state variables of one step before 
present time. This is performed by the coefficient 
transformation l3 : 

k k-i 
c k = ~ hm 

1 =0 

a. 
1 

o < k < N (9 ) 

With the condition, that the delay time Tt is a mul
tiple of the sample time: 

Tt = p • T; P > 1 (10) 

We obtain the solvable system of difference equations 
in figure 6 b. 

If this program structure is compared with the FFT, 
it should not be difficult to develop a digital pro
cessor like the FFT processor. If a typical 5 ~sec 
transient (error or control sample) is sampled with 
a 10 ~·1Hz transient recorder, we have typical 50 sample 
points. It is estimated, that the execution time of 
the digital processor for these 50 sample points 
could be less than 0.5 msec (FFT processors with 1024 
sample points have an execution time of 5 msec l4 ). 
That means, in the interval between two SNQ beam 
pulses (100 Hz repetition rate) about 20 transients 
with different parameter sets can be calculated. This 
should be sufficient, if only one or two fluctuating 
parameters have to be tracked in the practical accel
erator operation. If more parameters have to be 
tracked or if the parameter deviation between two 
samples is large (i.e. at first turn-on of the adap
tive loop) the time consumption may increase consid
erably, but the total adaption time should be less 
than 1 sec. 

The simulation method in figure 6 b had been tested 
with the closed loop response of the SNQ feedback 
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Fig. 6: Nth order dynamic system with delay and 
feedback 

system. As a next step the digital simulation will 
be implemented in the adaptive adjustment loop. 
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