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Summary 

The present version of the SUPERFISI-l program 
computes fundamental and higher order resonant 
frequencies and corresponding fields of azimuthally 
symmetric TE and TM modes (m=O) in an electromag
netic cavity which is a figure of revolution about a 
longitudinal axis. We have developed the program 
ULTRAFISH which computes the resonant frequencies 
and fielcls in such a cavity [or azimuthally asym
metric modes (cos m¢ with m ~ 1). These modes no 
longer can be characterized as TE and TM and lead 
to simultaneous equations involving two field com
ponents. These are taken for convenience to be rE¢ 
and rH¢, in terms of which all four other field com
ponents are expressed. Several different formula
tions for solving the equations are being investiga
ted. The resulting matrix consists of tridiagonal 
blocks of twice the dimension of SUPERFISH, but the 
matrix inversion and root finding procedures are the 
same. Care must be taken to remove t~e spurious 
singularity at w/ilE'r = m which appears in the formu
lation. We have also generalized SUPERFISH to obtain 
resonant frequencies of two climensional cavities of 
arbitrary cross section. In acldition, we have gen
eralized SUPERFISH ancl ULTRAFISH to include regions 
of different permeability and dielectric constant. 
The programs have been testecl on cavity shapes with 
analytically obtainable resonant frequencies. 

I. Introduction 

With the advent of high speed computing, tech
niques were developed for solving partial differen
tial equations numerically by approximating the equa
tions by d i Herence equations involving the values 0 f 
the function at mesh points. Iteration schemes were 
then usecl to solve these difference equations by 
"relaxation." for the calculation of azimuthally 
symmetric modes in azimuthally symmetric electro~ag
netic cavities, various codes were developed ancl 
applied to the clesign of cavities for linear acceler
utor sections. l 

The next major step in the numerical approach 2 
to the cavity mode problem is descrihed in SUrrRHSH 
Specificall)', this program used the more \'ersati Ie 
triangular mesh and directly inverted the matrix 
using the dri\'ing point and root finder technique 
described in Section 1'. 

The present paper describes the extension of 
the SUPERFISH program in the following ways: 
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1) Two dimensional cavities of arbitrary cross 
section. 

2) Regions of different permeability, W, and 
permittivity; E. 

3) Azimuthally asymmetric modes in azimuthally 
symmetric cavities. 

We have designated the new program as ULTRAFISH. 

The first two modifications are relatively 
simple and will only be descyibed hriefly. The bulk 
of the papey addresses the generalization to azi
muthally asymmetyic modes. 

II. Two Dimensions 

The existing SUPERFISII pyogyam is easily exten
ded to two dimensions by letting r + 00 in all rele
vant terms. In the operating pyogyam the Yesult is 
the elimination of one of the two terms in each of 
the coefficients in the difference equations. The 
modified program has been tested in cavities in the 
shape of a 45°, 45° right triangle and found to 
agree with the known analytic yesults foy the fye
quencies and fields. 

I IT . Regions of Different Permeahil i tv 
ancl Permlttlvi ty -'-

The existing SUPERFISII pyogram is easily extend
ed to include yegions of different E and W. The 
mesh must be drahn so that the boydey between Yegions 
of diffeYent E and W coincides with mesh lines, in 
which case the coefficients can be identified as 
having terms from the individual triangles. Thus, 
the E and W can be introduced as factoYs in Maxwell's 
equations corresponding to their values in each 
tYiangle of the mesh. The modified progyam has heen 
tested in cylindrical cavities with two different 
radial yegions of E and w, and with two diffeyent 
axial yegions of E and w. In each case the numeri
cal yesults agyeed with the knohn analytic results 
for the frequencies and fields. 

IV. Azimuthally Asymmetric Modes 

A. Field Components -- Mwavell's Equations 

We shall assume that Ez ' Er , H¢ all contain the 

factor cos m¢ that Hz, III" E¢ all contain the factor 

sin m¢. We fuyther assume that all electric field 

components have a factor e iwt , and that all magnetic 
f' d ' h f . iwt ~ leI components conta.ln t e actor Ie j1EO/WO' 

As a yesul t, Mwavell's equations foy the cylindrical 
components can be 'Hi tten as 

m ~dE k E E _m_H _ a: i
¢ kwH + -E = - --o yy= z' 0 rrz :lZ" 

~ H + k EE = 1:. ~-( 1'1. ) -~:~ + kWH = 1:. ~(It ) 
r r 0 z I' ay 'J rI'O z r ar !P 

(1) 
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koSEcp 
uH - 3I:!z (2) ~ 3r 

k 01! = dE 3C (3) dT 
- dr" o ¢ 

where )l and r, are the ratio of the penneabili ty and 3 
pennittivity to that of free space, It IS well known 
tJ1Ut the TE,TJ>i designation of wave guide or cavity 
solutions applies to very special geometries, and 
that with azimuthallY asvrnmetric modes one finds 
it necessary to use ~ co~hination of TE and TM 
modes, that is all six cylindrical components at 
the same time. This leads to the requirement that 
two functions must be specified at all mesh points 
Tn--order to detennine all field components. For 
reasons of simplicity, we shall use the two functions 

fer,:) = r EQ (r,z) 

and 

g(r,z) = r HQ (r,z) 

(4) 

( 5) 

This choice of variahles also guarantees f = g = 0 
for r = 0, as is the case for the choice of E , Hq, 
in SIJPERnSH (m=O). These functions are cont~nuous 
in the cavity, even if E and )l vary with pOSItIOn. 
~Ioreover, they satisfy the houndary conditions 

f 0, ~ = ° on a metallic (electric) houndary 
oIl 

df g 0, an 0 on a "magnetic" boundary 

We now can solve Equation (1) for all field 
conlponents in tenns of f and g (E¢ and H¢). The re
sult is 

'kllrilR+m af 

E z 

E 
r 

H 
r 

o ar a z 
---zy--' --2-

kor llE - m 

m df_k"rilR 
ar o~ az 
2 7 2 

k r~IlE - m 
o 

kt:r~
o ar 

.a.R 
m az 

-m .a.R -
ar 

2 - m 

k t:r ~ 
o az 

2 - m 

(6) 

(7) 

','here k2 = 2 I h t h f d " 0 W 1l0EO' t appears t a we ave oun a 

, .' 2"2 2/k2 H 'th SIngularIty at r r = m ollE. owever, sInce e 
fields arc finite, the slIlgularity must he sjJl:rious, 
and the numerators in (6) aEd (7) \\i 11 \'anish identic
ally at r = r. This poses a numerical obstacle 
however, since in our mesh ca1culation, the \'alues of 
rand g are not exact, and the cancellation may not be 
precise. Various smoothing techniques must be used in 
the triangles close to r = ~. 

B. Difference Equations 

IVe shall ohtain two difference equations for f 
~ld g hy integrating Equations (2) and (3) over the 

dodecagon surrounding eacr point, as constructed 
from the triangular mesh in SUPERFISH. Specifically, 
there arc six triangles surrounding each mesh point. 
The dodecagon connects the centroids of these six 
triangles alternately to the midpoints of the sides 
of the triangles which fann the spokes of the hexa
gon, as shown in Figure 1. 

fig. 1 Triangular mesh and corresponding 
dodecagon region of integration. 

Using Stokes Law, we obtain 

k If dr dz Ef = f (Hr c:~. + Hz dz) (8) 0 I' 

k If dr dz llg f (E dr + E dz) (9) 0 l' r z 

where the left sides arc integrals over the area of 
the dodecagon, and where the right sides are line 
integrals over the perimeter of the dodecagon. 
Using Equations (6) and (7), we write 

ko J f 

k J 
o g 

where 

J 
g 

L 
g 

If 
If 
f 

t 

dr dz 
r 

dr dz 
r 

m K 
g 

Ef 

llg 

df df 
rE(Tr dz - 3Z dr) 

2 2 
kor llE - m 

2 

rll (.a.R dz - .a.R dr) ar az 
2 2 2 

kor )lE - m I 
3cf . Stratton, Electromagnetic Theory, p. 526, 
McGraw Hill, 1941. 

(10) 

(11) 

(12) 

(13) 

(14) 
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(21) 

(15) with 

K 
g 

After extensive algebraic ma~ipulation one ob-
tains 

l: 
N=n 
even 

+ E A (3ao,n-l+2ao,n+2ao,n-2)J 
n-l n-l n n-l n-l 

(16) 

where J g is obtained by replacing f by g and c. by ]J. 

Here An' En are the area and permittivity of tri-

angle n in Figure 1, fN is the value of f at the 

vertex N (Roman numerals), and f is the value of f 
a . k 

at the "hub" of the hexagon. The parameters a~' 
l 

are defined as 

j ,k k,j 
a· a. 

l l 

with 

(J •• 

lJ 
1 r. 

= (J = -- 9,n --1. 
ji r.-r. r. 

J l l 

(17) 

(IS) 

In these expressions r i is the value of the radial 

coordinate at the dodecagon ver~ex, i, as shown in 
Figure 1. Clearly all running indices are modulus 
12, that is 

r 13 - r l , r 14 = r 2, etc. 
(19) 

r_l - r ll , r_2 = rIO' etc. 

TIle quantities Kf and Kg are given by 

6K
f 

= l: fN(Qn-l,n+2Qn-2,n-l_Qn,n+l_2Qn+l,n+2) 
N=n 
even 

+ f l: (Qn,n+l _ Qn-l,n) 
a n odd 

(20) 

where 

2 2 
k = kO]JE. (22) 

Once again Kg is obtained from Kf by replacing 

f by g. 

The quantities Lf and Lg are given by 

l: 
N=n 
even 

n-l n -- p '(2coten _
1

+coten _l ))J 

(23) 

+ 
where en' en' en are the three angles of triangle QY 
as shown in Figure 1, and where 

k2r2 2 
pi,j pj,i 1 1 

- m 
= 9,n 1 (24) =211 (r.-r.) k2r~ 2 

J l - m 
l 

Once again, Lg is obtained from Lf by replacing f by 

g and E by ]J. 

Equations (10) and (11), supplemented by the 
expressions for J, K, L in Equations (16), (20) and 
(23), are then the coupL:d difference equations for 
f and g at the mesh points. 

C. Boundary Conditions 

The boundary conditions on a metallic (electric) 
surface are clearly that both tangential components 

of E must vanish. This clearly implies 

f = 0 ,"electric" boundary (25) 

E dz + E dr = 0 z r "electric" bOlmdary (26) 

where dz and dr are taken along the boundary. From 
Equation (6) one can immediately deduce that Equa
tion (26) is equivalent to 

~-Cln - 0 "electric" boundary (27) 

where the derivative is .in a direction normal to the 
boundary in the r,z plane. 

Equation (25) can be directly applied as a 
boundary condition for each mesh point along the 
boundary. However, as an alternate the Equation 

Proceedings of the 1981 Linear Accelerator Conference, Santa Fe, New Mexico, USA

104



(27), we shall use Equation (9) or (11) over that 
portion of the boundary dodecagon which lies within 
the active region. Operational this corresponds to 
setting E = 0 and f = 0 in triangles outside the 
active region. 

For "magnetic" boundaries, the corresponding 
boundary equations are obtained hy interchanging E, 

f and !l,g. 

Both f and g are set equal to zero at the mesh 
points along the axis of rotation (r = 0). 

D. Driving Point and Root Finder 

As in all eigenvalue problems the solution of 
the homogeneous difference equations corresponding 
to Equations (10) and (11) requires obtaining the 
correct frequency. We shall proceed as in SUPER
FISH to assume that either Equation (10) or (ll) is 
driven by an external current element at one mesh 
;)oint, and then search for the value of the fre
quency at which the left side of the corresponding 
difference equation at that point vanishes. In 
ULTRAFISH it is essential that we allow for such a 
driving point in either Equation (10) or (11). In 
this way we will be able to include modes which 
have either Ecp or Hcp identically zero through the 

cavity for some special geometries. 

The root finder has also been taken from the 
successful experience in SUPERFISH. Specifically, 
we define 

(28) 

where Id is the equivalent driving current at mesh 

point d, given by 

Id = -mKg + ko (Lf - J f) (at mesh point d) (29) 

It can be shown, using the method of SUPERFISH, 
that 

d D(k2) = -1 at resonance. 
di1 

(30) 

so that a rapidly convergent search method can be 
used to find the eigenfrequency. 

Once again, it is necessary to use the expres
sion corresponding to Equation (30) with g replaced 
by f, and !l hy E in order to handle special modes 
for which g may be identically zero. 

E. Matrix Inversion 

The matrix inversion process is similar to 
that used in SUPERFISH, except that the blocks now 
have twice as many columns and twice as many rows. 
And the initial matrix is still mostly sparse with 
the non-vanishing elements concentrated around the 
diagonals. Because of the increased matrix size 
the inversion time for a given mesh size is appro
ximately 8 times that for SUPERFISH. 

F. Spurious Singularly at r = r 

As mentioned in Section IVA, there is a 
spurious singularity in the expressions for Ez ' Er , 

Hz, Hr at r = r. This makes its appearance in Kf , 

K , Lf , L where Qi ,j and pi ,j become singular in 
g g 

Equations (21) and (24) whenever 
m _ 

r i = K = r 

For this reason, the dodecagon vertices must avoid 

direct cancellation of r i and r, which may be dif

ficult to guarantee as k changes in the eigenvalue 
search. We are presently exploring the best way of 

A 

selecting the mesh points near r in order to mini
mize the effect of this singular behavior. 

TIle spurious singularity also enters into the 
calculation of Hz, Hr in the normalization integral 

in the denominator of D(i<2) in Equation (28). 
Smoothing teclmiques are required in order to avoid 

the singular behavior at r = r. 

V. Test Cases 

The program ULTRAFISH has been run on a cylin
drical cavity in order to locate several of the TE 
and 1M modes. We have c:lOsen a cavity of radius 
lOcm and length 2.Sncm = 7.8S398cm and have used a 
triangular lattice with approximately 600 mesh 
points. We have located the following modes 

A 

Mode ULTRAFISH Frell. Analytic Freq. ria 

2102.1 tvn-lz 2101. 0 ~n-Iz .23 

2409.1 MHz 2401.3 j\j]-jz .20 

SlOS.9 t-lfiz 5076.9 MHz .19 

ll47 .49 ~n-Iz ll47.43 t-n-Iz 

Plots of constant f = rEcp and g = rHcjl are shown for 

the TEll1 , TE211 , 101121 modes in Figures 2a, 2]), 2c 

respectively. These plots show no visible discon
tinui ty near the spuriov; s ingulari ty at 

r m mc a = Ka = 2nfa . 

It should be noted that the program also works for 
the azimuthally symmetric modes such as TMlllO ' For 

comparison, SUPERFISH predicts a resonant frequency 
1147.41 t-n-Iz. 

The program has also been tested on a spherical 
cavity with about SOO mesh points in order to find 
the mode designated as TElll (no radical electric 

field). In this case the frequency found by ULTRA
FISH for a radius of 10m is2141.8 \n-Iz while the cor
rect frequency is 2144.0 t-ll-lz. Tile plots of f = const 
and g = const are shown in Figure 3 and have the 
expected behavior. Further tests are being pursued 
in order to determine the accuracy of the frequency 
and field determinations as a function of mesh size. 
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VI. Possible Program Improvements 

Many persons have suggested possible improve
ments in the SUPERFISH and ULTRAFISH programs. 
Clearly, one can improve frequency and field ac
curacy by using more mesh points, but t.his can lead 
to unreasonable storage and time requirements for 
the computation. Recent interest in Finite Element 

Methods 4 also suggests using quadratic behavior in 
the tr~~ngular panels as a means of improving ac
curacy. This of course leads to more complicated 
difference equations for the field values, but may 
be the most practical way to achieve greater 
accuracy. 

Other possible improvements might be obtained 
by the following: 

1) Modify the analysis and procedure in such 
a way that the spurious singularities are removed 
analytically. (Note: One can have several values 
of ~ i f one has regions of different E and ]J .) 

2) Use as the functions r nr and rmg for m ~ 1 
in order to obtain greater accuracy for modes 
with high m. 

7 
3) Use r~ and z as the variables in a radial 

plane. This simplifies some of the integrals in 
the coefficients J, K, L, and approximates more 
accurately the field dependence near r=O. 

4) Multiply Equations (2) and (3) by a suit
ably selected weighting function before integration 
over the dodecagon. This technique is one of the 
options discussed in the Finite Element Method and 
may lead to more accurate fields and frequencies. 

5) Use a variational formulation for the 
eigen-frequency and smooth the linear panel behavior 
after the matrix inversion but before the calcula
tion of the eigen-frequency. ~ould lead to 
more accurate frequency determinations. 

111ere are many other possibilities which have 
been raised and which also deserve further con
sideration. 

VII. Conclusion 

We have developed the program ULTRAFISH to 
calculate azimuthally asymmetric modes in an 
electromagnetic cavity which is a figure of re
volution about a longitudinal axis. This repre
sents a generalization of the program SUPERFISH 
for azimuthally symmetric modes, and requires de
termining the values of two field components (rE ¢ 

and rIl q) at mesh points from coupled difference 

equations and boundary conditions. The program has 
been successfully tested for various TE and TM 
modes in cylindrical and spherical cavities. 

4See , for example, G. Strang and G.J. Fix, Analysis 
of the Finite Element Method, Prentice-Hall Series 
in Automatic Computation, 1973. 

SSee also S. Okumura, A Program Development of 
SUPERFISH, 1981, Linac Conference, Santa Fe, NM, 
Paper E19. 

The program also permits including regions of 
different ]J and E. In addition, the program can 

be used for m=O, to solve the 2 -D problem with an 
arbitrarily shaped boundary. 
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Fig. 2.'1 Lines of constant f and g for a 
TElll mode in a cylindrical cavity. 

~ 40 I ] 

Fig. 2b Lines of constant f and g for a 
TEzll mode in a cylindrical cavity. 
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Fig. 2c Lines of constant f and g for a 
Th1122 mode in a cylindrical cavity. 

Discussion 
The asymmetries seen in the present spherical 

test case will be studied further, for example by 
considering adaptive meshing. We could force sym
metry by computing only a quarter of the sphere. 
Also, a production calculation would use many more 
mesh points than we used in the test case. 

QUESTION: How were these calculations done 
in the good old days? 

ANSWER: (G 1 uck stern) : We 11, if Lloyd Smith 
were here, he could probably comment more. I think 
actually he did most of those calculations in the 
MTA himself and I think he did most of them with a 
hand calculator; I'm not even sure it was elec
tric. But it was a solution of the Bessel func
tions given boundary conditions and there were 
approximations made, but the big difference was 
that the people who were doing the calculating 
worked very closely with a whole host of people who 
were not programmers, but were mode 1 ers and who 
built copper models of the half cells that were 
calculated. They put in conductors in the places 
where there would be perturbations due to loops or 
to stems, or what have you, and made measurements 
and then corrected the calculations by an iterative 
process until there was a series of cells calcu
lated for a linac and verified by a model. Then, 
they went ahead and built it. 

(Livdahl): I can add a little bit to that. 
The method that was used for the first ana lyt i c 
calculations that I'm familiar with was developed 
by Walkinshaw and a number of others at Harwell. 
It corresponded to assumi ng a drift-tube geometry 
that was cyl indrical, then matching the fields at 
the outer radius of the drift tube. In the gap, 
the first assumption was that you had a TM010 
mode and in the outer reg i on you a 1 so a 11 owed for 
a sum of terms with d i ff erent Z dependence. You 
matched the electric field at this boundary; that 
allowed you to express each of the terms in the 
outer region's sum in terms of a single parameter 
that is the electric field magnitude on the axis 
in the gap. Then you calculated the magnetic field 

~ •• ~. UlTIIOIITrST~ 

Fig. 3 Lines of constant f and g for a TElll 
mode in a spherical cavity. 

and equated the average magnetic field in the gap 
at the boundary and that gave a single transcenden
tal equation for the frequency that you could solve 
by hand computation. Christofolous also contri
buted to the progress in that field by starting to 
press for drift tubes of stranger shapes than just 
the usual with the rounded corners, because he was 
able to demonstrate that those would have a higher 
shunt impedance, and would be more efficient. I 
think that gave the impetus to the next generation 
of computer programs, which were the MESSYMESH 
i terat i ve procedures that were deve loped at MURA, 
and the LALA iterative programs that were developed 
at Los Alamos. 

Proceedings of the 1981 Linear Accelerator Conference, Santa Fe, New Mexico, USA

107


