Proceedings of the 1981 Linear Accelerator Conference, Santa Fe, New Mexico, USA

ULTRAFISH -- GENERALIZATION OF SUPERFISH TO m > 1%

Robert L. Gluckstern
University of Maryland at College Park

Ronald F. Holsinger
Field Effects, Inc., Carlisle, Mass.

Klaus Halbach
Lawrence Berkeley Laboratory

Gerald N. Minerbo
Los Alamos National Laboratory

Summary

The present version of the SUPERFISH program
computes fundamental and higher order resonant
frequencies and corresponding fields of azimuthally
symmetric TE and T modes (m=0) in an electromag-
netic cavity which is a figure of revolution about a
longitudinal axis. We have developed the program
ULTRAFISH which computes the resonant frequencies
and fields in such a cavity for azimuthally asym-
metric modes {(cos m¢ with m > 1). These modes no
longer can be characterized as TE and TM and lead
to simultaneous equations involving two field com-
ponents. These are taken for convenience to be rE¢
and rH¢, in terms of which all four other field com-
ponents are expressed. Several different formula-
tions for solving the equations are being investiga-
ted. The resulting matrix consists of tridiagonal
blocks of twice the dimension of SUPERFISH, but the
matrix inversion and root finding procedures are the
same, Care must be taken to remove the spurious
singularity at w/per = m which appears in the formu-
lation., We have also generalized SUPERFISH to obtain
resonant frequencies of two dimensional cavities of
arbitrary cross section, In addition, we have gen-
eralized SUPERFISH and ULTRAFISH to include regions
of different permeability and dielectric constant,
The programs have been tested on cavity shapes with
analytically obtainable resonant frequencies.

I. Introduction

With the advent of high spced computing, tech-
niques were developed for solving partial differen-
tial equations numecrically by approximating the equa-
tions by difference equations involving the values of
the function at mesh points, Iteration schemes were
then used to solve these difference equations by
"relaxation.'" For the calculation of azimuthally
symmetric modes in azimuthally symmetric electromag-
netic cavities, various codes were developed and
applied to the design of cavities for linear acceler-
ator sections.

The next major step in the numerical approach 2

to the cavity mode problem 1s described in SUPERITTSH™.

Specifically, this program uscd the more versatile
triangular mesh and dircctly inverted the matrix
using the driving point and root finder technique
described in Section D.

The present paper describes the extension of
the SUPERFISH program in the following ways:

*Work supported in part by Los Alamos National Lab-
oratory, AT Division,

1T, Edwards, MURA Report 622 (1961), unpublished
(MESSYMESH) ; H. C. Hoyt, Rev, Sci. Instrum 37, 755
(1966) (LALA). -

2K. Halbach and R, F, Holsinger, Particle Accelera-
tors 7, 213 (1976) (SUPERFISH).
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1) Two dimensional cavities of arbitrary cross
section.

2) Regions of different permeability, u, and
permittivity, e.

3) Azimuthally asymmetric modes in azimuthally
symmetric cavities.

We have designated the new program as ULTRAFISH.

The first two modifications are relatively
simple and will only be described briefly. The bulk
of the paper addresses the generalization to azi-
muthally asymmetric modes.

IT, Two Dimensions

The existing SUPERFISH program is easily exten-
ded to two dimensions by letting r + < in all rele-
vant terms, In the operating program the result is
the elimination of one of the two terms in each of
the coefficients in the difference equations. The
modified program has been tested in cavities in the
shape of a 45°, 45° right triangle and found to
agree with the known analytic results for the fre-
quencies and fields,

ITT. Regions of Different Permeability

and Permittivity

The existing SUPERFISH program is easily extend-
ed to include regions of different ¢ and u. The
mesh must be drawn so that the border between regions
of different ¢ and p coincides with mesh lines, in
which case the coefficients can be identified as
having terms from the individual triangles. Thus,
the € and u can be introduced as factors in Maxwell's
equations corresponding to their values in each
triangle of the mesh, The modified program has been
tested in cylindrical cavities with two different
radial regions of ¢ and u, and with two different
axial regions of ¢ and y, In each case the numeri-
cal results agreed with the known analytic results
for the frequencies and fields.

IV. Azimuthally Asymmetric Modes

A. Field Components -- Maxwell's Equations
We shall assume that Ez’ E, H

all contain the

r’ ¢
factor cos m¢ that Hz’ Hr’ E¢ all contain the factor
sin mbé. We further assume that all electric field
it

components have a factor e, and that all magnetic
field components contain the factor iclwt/eo7uo .

As a result, Maxwecll's equations for the cylindrical
components can be written as
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where 1 and £ are the ratio of the permeability and
permittivity to that of free space. It is well known
that the TE,TM designation of wave guide or cavity
solutions applles to very special geometrleb, and
that with azimuthally asymmetric modes one finds

it necessary to use a combination of TE and TM

modes, that is all six cylindrical components at

the same time. This leads to the requirement that
two functions must be specified at all mesh points
in order to determine all field components. For
reasons of simplicity, we shall use the two functions

f(r,z) =1 E¢ (r,2) )
and

glr,z) = rHy (r,2) (5)
This choice of variables also guarantees £ = g = 0

for r = 0, as is the case for the choice of E,, H

in SUPERFISH (m=0). Thesc functions are continuous
in the cavity, even if ¢ and p vary with position.

Moreover, they satisfy the boundary conditions
£=0, 5%7— 0 on a metallic (electric) boundary
¢ =0, %g-: 0 on a "magnetic'' boundary

We now can solve Equation (1) for all field

components in terms of f and g (F and H ) The re-
sult is g of
o _Krartmag
E = :
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where ki = mzpoeo. Tt appears that we have found a

Z =m /k pe. However, since the
ficlds arc finite, the sxngularltv must be spurious,
and the numerators in (6) and (7) will vanish 1dent1c—
ally at r = T. This poses a numerlcal obstacle
however, since in our mesh calculation, the values of
f and g are not exact, and the Langellation may not be
nrecise. Various smoothlné techniques must be used in
the triangles close to r = 7.

singularity at rz =

B. Difference Equations

We shall obtain two difference equations for f
and g by integrating Equations (2) and (3) over the

dodecagon surrounding each point, as constructed
from the triangular mesh in SUPERFISH. Specifically,
there are six triangles surrounding each mesh point.
The dodecagon connects the centroids of these six
triangles alternately to the midpoints of the sides
of the triangles which form the spokes of the hexa-
gon, as shown in Figure 1.

VIl X

Fig. 1 Triangular mesh and corresponding
dodecagon region of integration.
Using Stokes Law, we obtain
kK 9az ef = ¢ (Har+ Hdo) (8)
o} T T z
k|9 g,, (E_dr + E.dz) 9)
0 T H8 T z

where the left sides are integrals over the area of
the dodecagon, and where the right sides are line
integrals over the perimeter of the dodecagon.
Using Equations (6) and (7), we write

Ko Jp = kg b - m K, (10)
K, Ty = ko by +m K (11)
where
d
Jp = H Sdzef (12)
J_ = ” dr 42 g (13)
g
(- dz - 2L d )
Le = ﬁg 27 E
o HE m
(14)

% ru (38 g—§ dr)
& kzrzue - m2

3cf. Stratton, Electromagnetic Theory, p. 526,

McGraw Hill, 1941.
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After extensive algebraic manipulation one ob-
tains
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where Jg is obtained by replacing f by g and ¢ by u.

Here An’ e, are the area and permittivity of tri-

angle n in Figure 1, fN is the value of f at the

vertex N (Roman numerals), and fo is the value of f

at the "hub" of the hexagon. The parameters a%’k
are defined as ?
. . T. T. .
Jok_ K i J _ij
a~ = a. = + - —
i i (ri—rj)(ri-rk) (ri rj)(rk rj)
r2 a
T -rk ik—r a7)
kY3 Tk
with
L
93 = %1 = T n T (18)

In these expressions Ty is the value of the radial

coordinate at the dodecagon vertex, i, as shown in
Figure 1. Clearly all running indices are modulus
12, that is

Tyg = Ty, Ty = T,, etc. (199
T F Ty, T, = Ty, €tC
The quantities Kf and Kg are given by
GKf - 5 fN(Qn—l,n+2Qn—2,n—l_Qn,n+l_2Qn+1,n+2)
N=n
even
+ £ . (Qn,n+1 B Qn-l,n) (20)
® n odd
where
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= koua, (22)

Once again Kg is obtained from Kf by replacing
f by g.

The quantities Lg and Lg are given by
- n,n+l
6Lf = E fN[en+1(-P ’
N=n
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where 0 9

as shown in Figure 1, and where

6 are the three angles of triangle ()

22 2
pid opiio 11 KT (24)
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Once again, Lg is obtained from Lf by replacing f by
g and € by u.

Equations (10) and (11), supplemented by the
expressions for J, K, L in Equations (16), (20) and
(23), are then the coupled difference equations for
f and g at the mesh points.

C. Boundary Conditions

The boundary conditions on a metallic (electric)
surface are clearly that both tangential components

of E must vanish. This clearly implies
f =0 , "electric" boundary (25)
Ezdz + Erdr =0 , "electric" boundary (26)
where dz and dr are taken along the boundary. From

Equation (6) one can immediately deduce that Equa-
tion (26) is equivalent to

g%-= 0 , "electric" boundary 27
where the derivative is in a direction normal to the
boundary in the r,z plane.

Equation (25) can be directly applied as a
boundary condition for each mesh point along the
boundary. However, as an alternate the Equation
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(27), we shall use Equation (9) or (11) over that
portion of the boundary dodecagon which lies within
the active region. Operational this corresponds to
setting € = 0 and f = 0 in triangles outside the
active region.

For "magnetic" boundaries, the corresponding
boundary equations are obtained by interchanging e,
f and u,g.

Both f and g are set equal to zero at the mesh
points along the axis of rotation (r = 0).

D. Driving Point and Root Finder

As in all eigenvalue problems the solution of
the homogeneous difference equations corresponding
to Equations (10) and (11) requires obtaining the
correct frequency. We shall proceed as in SUPER-
FISH to assume that either Equation (10) or (11) is
driven by an external current element at one mesh
voint, and then search for the value of the fre-
quency at which the left side of the corresponding
difference equation at that point vanishes. 1In
ULTRAFISH it is essential that we allow for such a
driving point in either Equation (10) or (11). In
this way we will be able to include modes which

have either E¢ or H¢ identically zero through the

cavity for some special geometries.

The root finder has also becn taken from the

successful experience in SUPERFISH. Specifically,
we define
kg I,u
Dk} = - —20 4 d @8)

drdz ;2 2.2 2. 2.
JJ——?~vuL1+r Hz+r Hr ]

where Id is the equivalent driving current at mesh
point d, given by
Id = —ng + kO(Lf - Jf) (at mesh point d) (29)

It can be shown, using the method of SUPERFISH,
that

i i
5%7 D(k") = -1 at resonance. (30)

so that a rapidly convergent search method can be
used to find the eigenfrequency.

Once agaln, 1t 1s necessary to use the expres-
sion corresponding to Equation (30) with g replaced

by f, and u by ¢ in order to handle special modes
for which g may be identically zero.

E. Matrix Inversion

The matrix inversion process is similar to
that used in SUPERFISH, except that the blocks now
have twice as many columns and twice as many rows.
And the initial matrix is still mostly sparse with
the non-vanishing elements concentrated around the
diagonals. Because of the increased matrix size
the inversion time for a given mesh size is appro-
ximately 8 times that for SUPERFISH.

F. Spurious Singularly at r = r

As mentioned in Section IVA, there is a

spurious singularity in the expressions for Ez, Er’

Hz’ Hr at r = r. This makes its appearance in Kf,
Kg’ Lf, Lg where Ql’J and P**J become singular in
Equations (21) and (24) whenever

m

r. = =T
ik

For this reason, the dodecagon vertices must avoid

direct cancellation of Ty and ;, which may be dif-

ficult to guarantee as k changes in the eigenvalue
search. We are presently exploring the best way of

selecting the mesh points near r in order to mini-
mize the effect of this singular behavior.

The spurious singularity also enters into the
calculation of Hz’ Hr in the normalization integral

in the denominator of D(kz) in Equation (28).
Smoothing techniques are required in order to avoid

the singular behavior at r = r.

V. Test Cases

The program ULTRAFISH has been run on a cylin-
drical cavity in order to locate several of the TE
and ™ modes. We have chosen a cavity of radius
10cm and length 2.5wcm = 7.85398cm and have used a
triangular lattice with approximately 600 mesh
points. We have located the following modes

Mode ULTRAFTSH Freq. Analytic Freq.| r/a
TE111 2102.1 MHz 2101.0 MHz .23
TE211 2409.1 MHz 2401.3 MHz .20
TM122 5105.9 Mz 5076.9 MHz .15
TMOlO 1147.49 MHz 1147.43 MHz -

Plots of constant f = rE¢ and g = rH¢ are shown for

the TElll’ TEle, TMlZl modes in Figures 2a, 2b, 2¢
respectively. These plots show no visible discon-
tinuity near the spurious singularity at

mc
rta °

[ R R

£z
)

It should be noted that the program also works for

the azimuthally symmetric modes such as TMOlO' For

comparison, SUPERFISH predicts a resonant frequency
1147.41 MHz.

The program has also been tested on a spherical
cavity with about 500 mesh points in order to find
the mode designated as TE 14 (no radical electric

field). In this case the frequency found by ULTRA-
FISH for a radius of 10cm is?21418 MHz while the cor-
rect frequency is Z144.0MHz. The plots of f = const
and g = const are shown in Figure 3 and have the
expected behavior. Further tests arc being pursued
in order to determine the accuracy of the frequency
and field determinations as a function of mesh size.
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VI. Possible Program Improvements

The program also permits including regions of

different u and e.

Many persons have suggested possible improve-
ments in the SUPERFISH and ULTRAIFISH programs.
Clearly, one can improve frequency and field ac-
curacy by using more mesh points, but this can lead
to unrecasonable storage and time requirements for
the computation. Recent interest in Finite Element

Methods4 also suggests using quadratic behavior in
the tr%?ngular panels as a means of improving ac-
curacy.” This of course leads to more complicated
difference equations for the field values, but may
be the most practical way to achieve greater
accuracy.

Other possible improvements might be obtained
by the following:

1) Modify the analysis and procedure in such
a way that the spurious singularities are removed
analytically. (Note: One can have several values
of £if one has regions of different sand u.)

. m m
2} Use as the functions r fandr g for m; 1
in order to obtain greater accuracy for modes
with high m.

3) Use rz and z as the variables in a radial
plane. This simplifies some of the integrals in
the coefficients J, K, L, and approximates more
accurately the field dependence near r=0.

4) Multiply Equations (2) and (3) by a suit-
ably selected weighting function before integration
over the dodecagon. This technique is one of the
options discussed in the Finite Element Method and
may lead to more accurate fields and frequencies.

5) Use a variational formulation for the
eigen-frequency and smooth the linear panel behavior
after the matrix inversion but before the calcula-
tion of the cigen-frequency. his should lead to
more accurate frequency determinations.

There are many other possibilities which have
been raised and which also deserve further con-
sideration.

VII. Conclusion

We have developed the program ULTRAFISH to
calculate azimuthally asymmetric modes in an
electromagnetic cavity which is a figure of re-
volution about a longitudinal axis. This repre-
sents a generalization of the program SUPERFISH
for azimuthally symmetric modes, and requires de-
termining the values of two field components (rE®

and TH ) at mesh points from coupled difference

equations and boundary conditions. The program has
been successfully tested for various TE and T™
modes in cylindrical and spherical cavities.

Fig.

4See, for example, G. Strang and G.J. Fix, Analysis
of the Finite Element Method, Prentice-Hall Series
in Automatic Computation, 1973.

See also S. Okumura, A Pro%ram Development of
SUPERFISH, 1981, Linac Conference, Santa Fe, NM,
Paper E19.
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Fig.

VIII.

In addition, the program can

be used for m=0, to solve the 2-D problem with an
arbitrarily shaped boundary.
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2b  Lines of constant f and g for a
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Fig. 2c Lines of constant f and g for a
TM172 mode in a cylindrical cavity.

Discussion
The asymmetries seen in the present spherical
test case will be studied further, for example by
considering adaptive meshing. We could force sym-
metry by computing only a quarter of the sphere.
Also, a production calculation would use many more
mesh points than we used in the test case.

QUESTION: How were these calculations done
in the good old days?
ANSWER (Gluckstern): Well, if Lloyd Smith

were here, he could probably comment more. I think
actually he did most of those calculations in the
MTA himself and I think he did most of them with a
hand calculator; I'm not even sure it was elec-
tric. But it was a solution of the Bessel func-
tions given boundary conditions and there were
approximations made, but the big difference was
that the people who were doing the calculating
worked very closely with a whole host of people who
were not programmers, but were modelers and who
built copper models of the half cells that were
calculated. They put in conductors in the places
where there would be perturbations due to loops or
to stems, or what have you, and made measurements
and then corrected the calculations by an iterative
process until there was a series of cells calcu-
lated for a linac and verified by a model. Then,
they went ahead and built it.

(Livdah1): I can add a little bit to that.
The method that was used for the first analytic
calculations that I'm familiar with was developed
by Walkinshaw and a number of others at Harwell,
It corresponded to assuming a drift-tube geometry
that was cylindrical, then matching the fields at
the outer radius of the drift tube. In the gap,
the first assumption was that you had a TMgig
mode and in the outer region you also allowed for
a sum of terms with different Z dependence. You
matched the electric field at this boundary; that
allowed you to express each of the terms in the
outer region's sum in terms of a single parameter
that is the electric field magnitude on the axis
in the gap. Then you calculated the magnetic field

< Ty My constant
[ 7~

PROD. NAME . ULTRA TEST 2 FREQ ~2he1.Rea

R TR R R

Fig. 3 Lines of constant f and g for a TE1

mode in a spherical cavity. =

and equated the average magnetic field in the gap
at the boundary and that gave a single transcenden-
tal equation for the frequency that you could solve
by hand computation. Christofolous also contri-
buted to the progress in that field by starting to
press for drift tubes of stranger shapes than just
the usual with the rounded corners, because he was
able to demonstrate that those would have a higher
shunt impedance, and would be more efficient. I
think that gave the impetus to the next generation
of computer programs, which were the MESSYMESH
iterative procedures that were developed at MURA,
and the LALA iterative programs that were developed
at Los Alamos.
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