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Summary 

Beam-intensity and emittance measurements 
show that the H- beam from our Penning surface
plasma source (SPS) has twice the intensity and ten 
times the brightness of the H- beam from an asym
metric, grooved magnetron SPS. We deduce H- ion 
temperatures of 5 eV for the Penning SPS and 22 eV 
for the asymmetric, grooved magnetron. 

Experimental Apparatus 

As part of an accelerator development program 
at Los Alamos, we measured the H- beam intensity 
and emittance for our Penning SPS I and for the BNL 
Mark III magnetron 2 (called the asymmetric, grooved 
magnetron, or AGM, in this paper). Figure 1 shows 
a schematic of our experimental arrangement. The 
H- beam is extracted from the source emission 

slit (10 by 0.5 mm2) with an extraction electrode 
at -15 kV across an -2-mm gap. The beam is trans
ported through 90° by a dipole bending magnet 
having a field index n = 0.85. After exiting the 
dipole magnet, the beam drifts 17 cm (19 cm for the 
Penni ng source) to the two (orthogonal) emi ttance 
scanners. 3 Each emittance scanner has an accept
ance of ±130 mrad in angle and ±8 cm in position. 
The mechanical angular resolution of the emittance 
scanners is ±1/4 mrad. 

A Faraday cup (7 by 5 cm2) is mounted on 
one of the emittance scanners for beam-current 
measurement (FC2 in Fig. 1). Comparison of the 
FC2 current with the FCl current (FC1 is inserted 
just after the extraction electrode) determines the 
beam-transport efficiency through the dipole magnet 
to the emittance scanners. After correct i ng for 
stripping losses of the H- beam in the background 
hydrogen gas (a 1 to 2% correction), the transport 
efficiency is typically 90% for the Penning source 
and 70% for the magnetron. 

The Penning 1 ,3 and AGM 2 source dimensions are 
contained in Refs. 1 and 2 respectively, with the 
except i on that the AGM emi ss i on slit was changed 

from 45 by 0.6 mm2 to 10 by 0.5 mm2. The source 
operating parameters used to obtain our measure
ments are given in Table I. 

*Work supported by the US Department of Energy. 
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Schematic showing the location of the 
H- ion source, 90° dipole magnet, Faraday 
cups (FC1, FC2, and FC3), and the emittance 
scanners. The x-direction is in the mag
net bending-plane; z, in the beam direc
tion; and y, perpendicular to x and z. 

Emittance Measurements 

Figure 2 shows the measured two-dimensional, 
normalized emittance £ as a function of the beam 
fraction F for the Penning and the AGM sources. The 
beam fraction F = It/Io, where It is the beam cur-
rent included in the brightness contour set by the 
threshold t, and 10 is the total beam current 

measured at FC2. The normalized emittance is cal
culated from 

dF) = 8yA(F) /Tf (1) 

where A is the phase-space area of the beam and 8 
and yare the usual relativistic parameters. The 
normalized brightness values B(F x F) are calcu
lated from 

(2) 

The total H- beam current and the emittance at 
F = 0.63 are given for both sources in Table I. 
The 10 values given in Table I are typical of 

the H- currents that routinely can be obtained 
in FC2. The maximum values for 10 are 60 mA and 
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Fig. L. Two-dimensional, normalized emittance E 

versus the beam fraction F for a 79-mA, 
17-keV H- beam from the Penning SPS 
(open points, so 1 i d curves) and for a 
40-mA, 14-keV H- beam from the asymmet-
ric, grooved magnetron SPS (solid points, 
dashed curves) in the x (circles) and y 
( squares) planes. The curves are ca lcu-
1 ated from Eq. (3) as discussed in the 
text. 

130 mA for the AGM and Penning sources, respec
tively. Figure 3 shows the x,a and y,¢ phase-space 
areas for the Penning and AGM sources for F = 0.85. 

Discussion 

Recently, Allison 4 ,s proposed a simple model 
of H- ion beam emittance that allows calculation 
of the emittance as a function of the beam frac
tion. In this model, it is assumed that the H
ions have a rvlaxwellian velocity distribution of 
temperature T and are emitted uniformly in space 
from the rectangular emission slit. The predicted 
functional dependence of beam fraction on emittance 
is 

(3) 

where R is the slit half-width and m is the ion 
mass. The curves in Fig. 2 were calculated using 
Eq. (3), normalized to the values of E at F = 0.63. 
The resulting estimates of the H- ion temperature 
are kT x = 5 eV, kTy = 840 eV for the Penning and 

kTx = 22 eV, kTy = 5650 eV for the AGM sources. 

T ABC E I 

Operating Parameters ana Measured Beam Quality 

for the Penni ng and AGM SPS Sources. 

Discharge current, A 

lJi scharge vo ltage, V 

lJ i sc h arge-vo ltage 
fluctuations (peak
to-peak), V 

flagnetic fleld, T 

Pulse length, rns 

lJuty factor, 

Ileam energy, keV 

H- current (1 0 ), mA* 

Emission-slit dimensions, 

mm2 

£x(U.63) x £y (0.63), 

n 2crnZmrad 2 

1l(0.63 x 0.63), A/cm2mrad2 

k T x' eV 

Penn i ng SPS 

100 

48 

< ±O.5 

0.25 

1.3 

0.98 

17 

79 

10 by 0.5 

Asymmetric, 
Grooved Magnetron SPS 

49 

200 

±10 

0.20 

3.0 

0.18 

14 

40 

10 by 0.5 

0.041 by 0.027 0.087 by 0.070 

14 1.3 

22 

840 5650 

*Measured at the emittance-scanner Faraday cup (FeZ in Fig. 1) 
after magnetic analysis of the beam. Before magnetic analysis the 
W current (Fel in Fig. 1) is 89 mA and 58 rnA for the Penning 
and AGM sources, respectively. 

Two second-order aberrations in the dipole 
magnetic field couple the x- and y-plane emit
tances,6 resu lt i ng in the 1 arger emittance of the 
x-plane masking the initially (far) smaller emit
tance of the y-plane. * This explains why the 
ratio of x- to y-plane emittances is 1.5:1 for the 
Penning SPS, instead of the 20:1 ratio of emission
slit length to width. The two second-order magnet 
aberrations cannot be simultaneously eliminated, 
their combined effect only can be minimized! This 
x-y coupling results in spuriously large kTy values 

for both sources; we therefore use the x-plane 
emittance values to estimate the H- ion temperature 
in the source emission region, 5 eV and 22 eV for 
the Penning and AGM SPS sources, respectively. We 
observed oscillations in the discharge voltage of 
< ±0.5 V for the Penning SPS and ±10 V for the AGM 
SPS (l-MHz bandwidth on the oscilloscope amplifier 
used to measure the voltage fluctuations). These 
voltage fluctuations may indicate the presence of 
plasma instabilities that couple to the H- ions 
in the discharge to increase their apparent tem
perature. 

*Our pepper-pot measurements (unpub 1 i shed) for a 
100-mA, pulsed H- beam from a Penning SPS, Slml
lar to that of Ref. 7, show an x- to y-plane emit
tance rat i 0 of -10: 1 after the beam has traversed 
-2 cm in the dipole magnet. 
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Fig. 3. Two-dimensional phase-space plots for the 
Penning SPS (solid lines) and the asymmet
ric, grooved magnetron SPS (dashed lines) 
for the a) x,a and the b) y,¢! planes. The 
displayed curves enclose 85% of the total 
beam. 

Conclusions 

We find that for a 10- by 0.5-mm2 emission 
slit and beam transport through the same n = 0.85 
dipole magnet, the H- beam from our Penning SPS 1 

has 2 times the intensity and 10 times the bright
ness of the H- beam from the AGM SPS. The H
ion temperature, deduced from a Maxwellian mode1 4

,5 

and our emittance measurements, is 5 eV for the 
Penning SPS and 22 eV for the AGM SPS. 
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