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H~ BEAM EMITTANCE MEASUREMENTS FOR THE PENNING AND
THE ASYMMETRIC, GROOVED MAGNETRON SURFACE-PLASMA SOURCES™

H. Vernon Smith, Jr. and Paul Allison AT-2 (MS 818)
Los Alamos National Laboratory, Los Alamos, New Mexico 87545

Summary

Beam-intensity and emittance measurements
show that the H~ beam from our Penning surface-
plasma source (SPS) has twice the intensity and ten
times the brightness of the H~ beam from an asym-
metric, grooved magnetron SPS. We deduce H~ ion
temperatures of 5 eV for the Penning SPS and 22 eV
for the asymmetric, grooved magnetron.

Experimental Apparatus

As part of an accelerator development program
at Los Alamos, we measured the H™ beam intensity
and emittance for our Penning SPS! and for the BNL
Mark III magnetron? (called the asymmetric, grooved
magnetron, or AGM, in this paper). Figure 1 shows
a schematic of our experimental arrangement. The
H~ beam 1is extracted from the source emission

slit (10 by 0.5 mmé) with an extraction electrode
at ~15 kV across an ~2-mm gap. The beam is trans-
ported through 90° by a dipole bending magnet
having a field index n = 0.85. After exiting the
dipole magnet, the beam drifts 17 cm (19 cm for the
Penning source) to the two (orthogonal) emittance
scanners.® Each emittance scanner has an accept-
ance of #130 mrad in angle and #8 cm in position.
The mechanical angular resolution of the emittance
scanners is *1/4 mrad.

A Faraday cup (7 by 5 cm) is mounted on
one of the emittance scanners for beam-current
measurement (FC2 in Fig. 1). Comparison of the
FC2 current with the FCl current (FCl is inserted
just after the extraction electrode) determines the
beam-transport efficiency through the dipole magnet
to the emittance scanners. After correcting for
stripping Tosses of the H~ beam 1in the background
hydrogen gas (a 1 to 2% correction), the transport
efficiency is typically 90% for the Penning source
and 70% for the magnetron.

The Penning!>? and AGM? source dimensions are
contained in Refs. 1 and 2 respectively, with the
exception that the AGM emission slit was changed

from 45 by 0.6 mm? to 10 by 0.5 mme . The source
operating parameters used to obtain our measure-
ments are given in Table I.

*Work supported by the US Department of Energy.
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Fig. 1. Schematic showing the location of the
H- ion source, 90° dipole magnet, Faraday
cups (FCl, FC2, and FC3), and the emittance
scanners. The x-direction is in the mag-
net bending-plane; 2z, in the beam direc-
tion; and y, perpendicular to x and z.

Emittance Measurements

Figure 2 shows the measured two-dimensional,
normalized emittance ¢ as a function of the beam
fraction F for the Penning and the AGM sources. The
beam fraction F = I{/Ig, where Iy is the beam cur-

rent included in the brightness contour set by the
threshold t, and I, is the total beam current

measured at FC2. The normalized emittance is cal-
culated from

e(F) = gyA(F)/n (1)

where A is the phase-space area of the beam and 8
and y are the usual relativistic parameters. The
normalized brightness values B(F x F) are calcu-
lated from

B(FXF) = 2Io/[n2ex(F)ey(F)] . (2)

The total H~ beam current and the emittance at
F = 0.63 are given for both sources in Table I.
The I, values given in Table 1 are typical of

the H~ currents that routinely can be obtained
in FC2.  The maximum values for I; are 60 mA and
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Fig. 2. Two-dimensional, normalized emittance e
versus the beam fraction F for a 79-mA,
17-keV  H~ beam from the Penning SPS
(open points, solid curves) and for a
40-mA, 1l4-keV H~ beam from the asymmet-
ric, grooved magnetron SPS (solid points,
dashed curves) 1in the x (circles) and y
(squares) planes. The curves are calcu-
lated from Eq. (3) as discussed in the
text.

130 mA for the AGM and Penning sources, respec-
tively. Figure 3 shows the x,e and y,9 phase-space
areas for the Penning and AGM sources for F = 0.85.

Discussion
Recently, Allison":° proposed a simple model
of H= ion beam emittance that allows calculation
of the emittance as a function of the beam frac-
tion. In this model, it is assumed that the H-~
jons have a Maxwellian velocity distribution of
temperature T and are emitted uniformly in space
from the rectangular emission slit. The predicted
functional dependence of beam fraction on emittance
is

F = erflne/ 4R (2kT/mc2)1/2}] (3)

where R is the slit half-width and m 1is the ion
mass. The curves in Fig. 2 were calculated using
Eq. (3), normalized to the values of ¢ at F = 0.63.
The resulting estimates of the H™ ion temperature
are kTy =5 eV, kTy = 840 eV for the Penning and

kT = 22 eV, kTy = 5650 eV for the AGM sources.

TABLE 1

Operating Parameters ang Measured Beam Quality
for the Penning and AGM SPS Sources.

Asymmetric,

Penning SPS Grooved Magnetron SPS

Discharge current, A 100 49
Uischarge voltage, V 48 200
bischarge-voltage < %0.5 =10
fluctuations (peak-
to-peak), V
Magnetic field, T 0.25 0.20
Pulse length, ms 1.3 3.0
Luty factor, % 0.98 0.18
Beam energy, keV 17 14
H™ current (Ig), mA™ 79 40

Emission-slit dimensions, 10 by 0.5 10 by 0.5

mmé

e (0.63) x ey (0.63), 0.041 by 0.027 0.087 by 0.070

nzcmzmradz
B(0.63 x 0.63), Afcmlmraa? 14 1.3
KTy, eV 5 22
KTy, ey 840 5650

*Measured at the emittance-scanner Faraday cup (FC2 in Fig. 1)
after magnetic analysis of the beam. Before magnetic analysis the
H= current (FCl in Fig. 1) is 89 mA and 58 mA for the Penning
and AGM sources, respectively.

Two second-order aberrations in the dipole
magnetic field couple the x- and y-plane emit-
tances,® resulting in the larger emittance of the
x-plane masking the 1nL§ia11y (far) smaller emit-
tance of the y-plane. This explains why the
ratio of x- to y-plane emittances is 1.5:1 for the
Penning SPS, instead of the 20:1 ratio of emission-
s1it length to width. The two second-order magnet
aberrations cannot be simuitaneously eliminated,
their combined effect only can be minimized.! This
x-y coupling results in spuriously large kTy values

for both sources; we therefore use the x-plane
emittance values to estimate the H™ ion temperature
in the source emission region, 5 eV and 22 eV for
the Penning and AGM SPS sources, respectively. We
observed oscillations in the discharge voltage of
< ¥0.5 V for the Penning SPS and #10 V for the AGM
SPS (1-MHz bandwidth on the oscilloscope amplifier
used to measure the voltage fluctuations). These
voltage fluctuations may indicate the presence of
plasma instabilities that coupie to the H~ ions
in the discharge to increase their apparent tem-
perature.

*our pepper-pot measurements (unpublished) for a
100-mA, pulsed H™ beam from a Penning SPS, simi-
lar to that of Ref. 7, show an x- to y-plane emit-
tance ratio of ~10:1 after the beam has traversed
~2 cm in the dipole magnet.
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Fig. 3. Two-dimensional phase-space plots for the
Penning SPS (solid lines) and the asymmet-
ric, grooved magnetron SPS (dashed lines)
for the a) x,e and the b) y,d planes. The
displayed curves encliose 85% of the total
beam.

Conclusions

We find that for a 10- by 0.5-mm¢ emission
slit and beam transport through the same n = 0.85
dipole magnet, the H~ beam from our Penning SPS!
has 2 times the intensity and 10 times the bright-
ness of the H~ beam from the AGM SPS. The H-
jon temperature, deduced from a Maxwellian model”>®
and our emittance measurements, is 5 eV for the
Penning SPS and 22 eV for the AGM SPS.
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