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Summary 

In studying the beam dynamics within an rf quadru
pole accelerator it is requi red to compute the 
potentials and fields rapidly. If an analytic function 
is to be used, the harmonic coefficients of the 
expressions must be calculated for each cell. A com
puter package has heen developed which employs a 3 
dimensional differential finite element method with 
about 1500 nodes to model a single 1800 cell. A conju
gate gradient solver is used. The harmonic coef
ficients of the potential function are obtained by a 
least squares method using the potentials at those 
nodes lying within a cylindrical area just inside the 
poles. The total calculation time per cell is about 30 
CPU seconds on a CDC Cyber 175. Results are compared 
with those previ ously obtai ned by means of the CHRG3D 
image charge program. 

Introduction 

The radi ofrequency quadrupole accelerator (RFQ) 1 

is an exciting recent development in linear accelerator 
techno logy. enab l-j ng hi gh i ntens ity ion heams to be 
accelerated and hunched in the same device. 

In studying the heam dynamics in an RFO it is 
desirable to parameterize the potential function within 
each of several hundred 'cells'. There is fairly 
smooth variation of parameters from one cell to its 
neighhour, so in practice it is sufficient to compute 
them only at every tenth cell and then interpol ate. 
lJntil recently the potential distribution within an RFQ 
cell has heen parameterized with the aid of a computer 
program CHRG3D 2 which uses an image charge integral 
method. 

This paper reports the development of a program 
which employs a 3 dimensional differential finite 
element method 3 to obtain the potential distribution 
and then uses a least squares fit to ohtai n the har
moni c coeffi ci ents di rect ly from the nodal potentials 
which lie on an irregular mesh. Surface field intensi
ties on the vanes are also computed by the program. 
The following sections describe the program structure, 
the mesh generator and a comparison of results and CPU 
requirements with the previously used CHRG3D method. 

Program Structure 

The program has been constructed on a modular 
basis, each of which exists as a separate program. The 
reasons for this are twofold: 

(a) 

(b) 

Shortage of availahle core on the CYBER 175 has 
heen easiest to overcome by separating the various 
parts of the program. 

The mesh generation and solver modules were also 
required for a separate project to investigate 
space charge and image charge effects. 

The three modules from which the package has been built 
are a) mesh generator, b) matrix assemhler and 
c) potential solver, (with surface field evaluation and 
coefficient extraction). Figure 1 shows a flow diagram 
of the respective modules. 
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Mesh Generator 

Because of symmetry only one quadrant of the cell 
is modeled; the length is SA/2. The mesh used is com
pri sect ent ire 1 y of 20 nocte i sopa ramet ri c hri ck 
elements. All elements are of equal length in the 
axial (Z) direction. In the transverse (XY) planes the 
mesh topology is maintained throughout the length of 
the cell but because of the variation in the pole 
profile the dimensions of all elements change. How
ever, the pl anes at the two ends of the cell are such 
that they are mi rrors of each other, with X and Y 
directions interchanged. 

The me.sh generator sundi vi des the houndary such 
that t~ere 1S the same numher of mesh spacings, hetween 
the aX1S and ea~h pole, as there is around each pole 
contou r. ThE> 1 nte rna 1 mesh is then canst ructed by 
interp~lation •. The .element structure of a typical XY 
pl~ne 1S shown 1n F1g. 2. Each plane is treated in 
th1S way and .then the element nodal table is generated 
and the data 1S wr1tten to disk element by element. 

y 

AXIS 

X AXIS 

Fig.;1 A typical mesh cross section in an XY plane. 

Matrix Assembly 

The assembly and solver routines are deSigned to 
solve Poisson's Equation, E'7Z~ + P = 0, where ~ is the 
potential, p is the charge density and E the dielectric 
constant. 

The matrix formulation for the finite element 
method gives: 

f(rB1TrDlrRl\~} + \p}:Nl[NlT)dV = 0 

where Pll is the matrix of shape function derivatives, 
at the nodes, with respect to the X, Y and Z 
directions. rOl is a matrix of material constants 
which here is a single term equal to the dielectric 
constant of free space. {pI is a vector of nodal 
charge densities and rN] is a matrix of element shape 
functions at the nodes. The expression !rBlTrolrRldv 
is traditionally known as the 'stiffness matrix' •. 

For the prahl em to he sol ved here, the Lapl ace 
Equation, the charge densities are zero and the right 
hand sides of the equations to be solved are comprised 
of those terms pertaining to the known boundary 
potentials. The element data is first scanned in order 
to map the matrix sparsity pattern for the conjugate 
qradient solver. The sparsity pattern is a set of 
pointers showing the true positions of the non zero 
terms of the matri x which are stored in a compressed 
array. .~ second scan reads the nodal coordi nates and 
uses the shape functions to construct the 'stiffness 
matrix' for each element, which is then added in to the 
main matrix array. The assembly is done with the whole 
matrix in core. The nodes on the end Z planes are 

'slaved' together in a negative sense, use being made 
of the symmetry of the cell which has end planes that 
are mi rror images of each other with the X and Y 
directions and also the potentials interchanged. At 
the end of this step the matrix is stored on disk. 

Solver 

The solver uses the Incomplete Cholesky Conjugate 
Gradi ent method (ICCG) 4 • Thi sis a very effi ci ent 
method whi ch converges in ahout 11 iterations. About 
50 iterations of the solver are required if the nodes 
of the end planes are not 'slaved' together. 

The main advantage of the conjugate gradient 
method for this application is that it is an in-core 
solver. ~lso, the development work was ultimately 

directed towards representation of space charge, where 
the solver would need to he entered many times using 
the prev10us solution potentials as a starting point, 
and where the ICCG sol ver would he more efficient than 
most other methods. 

Surface Fields 

When the solution for the potentials has been 
ohtained the element data is then scanned to determine 
which elements and which nodes lie on the pole 
surfaces. The electric fields at each surface node are 
calculated using the shape function derivatives and 
nodal potentials for each element. That is 

E a~ 
x - ax 

and similarly for Ey and Ez • 

Wh"re two or more elements touch at a boundary 
there are slightly diff"rent values of fields calcu
lated for the adjoining nodes for "ach of these 
"lements. However, the variation is only about n.5~ 
and, as it is the maximum valuf' which is sought, this 
will he the order of magnitude of the error. 

. ~ t.ahle of surface field components may be printed 
1f requlred. The maximum value of the field is also 
output. 

Extraction of Coefficients 

The function us"d to describe the potential 
distrihution in an rf quadrupole is: 

\I \(Coo/az)rz cos (?e) 

+ C10 Io(kr) cos (kz) 

+ (C oda 6 )r 6 cos (6e) 

+ C 11 14 (kr) cos (4e) cos(kz) 

+ C 20 I z (2kr) cos(28) cos(2kz) 

+ CZ1 16 (2kr) cos(68) cos(2kz) 

+ C21 16 (2kr) cos(68) cos (2kz) 

+ C 30 I o(3kr) cos (3kz) 

+ C 31 14 (3kr) cos (48) cos (3kz) 

where the 1m val ues are the hyi)erbol i c Ressel 
functions and k is 1f divided by the cell length. The 
coefficients are evaluated directly from the nodal 
potentials using a least squares fit. Only those 
potentials at nodes which lie within a radius smaller 
than the minimum pole radius are used. Weights are set 
at unity. 
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Tabl e 1 

Comparison of Coefficients obtained from CHRG3D Package with those from RFQCOEF 

Cell a M CL EFAC C10 COO/a 2 C11 C01/a 6 C30 C20 C31 C21 

20 0.409 1.020 0.58 1.301 0.00606 5.73007 0.05304 4.94852 0.0 -0.00003 0.0 0.00072 
1.294 0.00601 5.74846 0.05031 4.41814 0.0 -0.00002 -0.00001 -0.00077 

60 0.399 1.072 0.60 1.339 0.02273 5.73981 0.20874 4.89934 0.0 0.00003 0.0 -0.00031 
1.335 0.02280 5.75573 0.21751 4.51230 0.0 -0.00006 -0.00001 0.00402 

100 0.392 1.111 0:68 1.347 0.04307 5.74320 0.45675 4.88818 0.0 0.00018 0.0 0.00087 
1.345 0.04296 5.75630 0.48357 4.03974 -0.00001 0.00022 -0.00002 0.00628 

140 0.3R1 1.171 0.92 1.3[>4 0.09684 5.74616 1.40462 4.74544 0.0 0.00076 0.0 -0.04081 
1.324 0.09662 5.75831 1.35976 3.84250 0.0 0.00096 -0.00015 -0.09994 

180 0.309 1.631 l.Q4 1.437 0.44918 5.65552 -36.14094 2.36514 -0.00002 -0.04355 -0.10643 -100.715 
1.3R4 0.44807 5.66045 -34.26460 1.44060 -0.00007 -0.04664 -0.10646 -99.0374 

The upper value of each pair is the value from CHRG3D, the lower is that from RFOCOEF. 

Comparison with CHRG3D Results 

Prior to development of this package an image 
charge method known as CHRG30 had been employed to 
extract the coefficients. The latter program computes 
the potentials over a cylinder within the minimum pole 
radius and uses a Fourier analysis to extract the har
monics. The runninq time of the CHRG30 program on the 
Cyber 175 is af)out 3n minutes to extract one set of 
coefficients. With the RFnCOEF package it is foun~ 
that sufficient accurilcy is obtained using a mesh of 
fi x fi quadratic hrick elements in each plane and 8 
planes of elements in the axial direction. The total 
running time to extract one set of coefficients on the 
Cyher 175 is about 30 seconds. 

Table 1 shows the values of the coefficients 
obtained by the two methods and also gives values of 
the enhancement factor, which is given by: 

Maximum Surface Field Ro 
EFAC = Voltage between Vanes x -z 

where Ro is the di stance from the beam axi s to the 
pole tips at the midplane of the cell. 

The transverse radius of curvature of the poll' 
tips was 0.348 cm for all cells. The vanes wl're 
tapl'reri, from the radi IJSf>ri tips, to qi ve a maxi mum 
width of 2.2 cm at <.R17 cm from the beam axis. A dis
crepancy in the enhancement factor values became 
noticeable as the cell length was increased. Also, il 
difference in the values of COl hecilme more marked, 
heing about 60'1; ilt the hi ghest number cell. Therefore~ 
a further check was done aga"i ~st a progrilln POTRFO 
w~ich uses il series solution method. The cell 
d"imensions used for this check were: a = 0.33 em, M = 
1.489. All other dimensions were the same as for the 
examples in Tah1e 1. With a potential of 76 kV between 
the vanes the calculated pole tip fields were: 

(a) with RFOCOEF 14.50 and 23.Rl MV/M 
(b) with POTRFO 14.58 and 23.R4 MV/M. 

This is reqnrderl ilS confirmation that the surface field 
values given by RFI)COEF are reliable to hetter than 1~ 
and wou1<1 sugges t that the rHRG3fl g"i ves a value wh"i ch 
is ahout 3'1; high for the longer cells. It also "indi
cates thilt. the "coefficient values are likely to be more 
reliahle than those from CHRG30. The large d"iscrepancy 
in the Co I values at the ~i qh energy enrl of the RFI) 
will have little effect on the heam dynamics. 

The numher of mesh elements userl in these tests is 
near the pract"ical limit availahle on the Cyber 175 
using the ICrG in-core sol ver. Tests with varying 
numbers of mesh elements in each rlirection indicate 
thilt only the higher order coefficients show a signifi
cant change from one run to another. 

Even with elements which are very elongated in the 
Z di rection the discrepancy in potential values 
ohtained throughout the hl'am region is well he10w 1% 
compared with those obtained when the mesh elements are 
of equal size in each direction. This means that so 
long as a complete set of coefficients is used from any 
one" run the fit will he good. 

Conclusions 

A program which will enahle RFO potential harmonic 
coefficients to he evaluilt.ed rapidly has heen 
developed. This program could eventually he integrated 
into a larger package so that the coefficients were 
ohtained for a whole RFO in one run. By this means the 
potential solution for each st.age would be used as a 
starting point for the next, and the time spent in the 
solution routines ,"auld be reduced by about 60~,. 
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