
AN RFQ SIMULATION CODE* 

W. P. Lysenko, AT-6, MS-H829 
Los Alamos National Laboratory, Los Alamos, New Mexico 87545 USA 

We have developed the RFQLIB simulation system to 
provide a means to systematically generate the new ver
sions of radio-frequency quadrupole (RFQ) linac simula
tion codes that are required by the constantly changing 
needs of a research environment. This integrated sys
tem simplifies keeping track of the various versions of 
the simulation code and makes it practical to maintain 
complete and up-to-date documentation. In this scheme, 
there is a certain standard version of the simulation 
code that forms a 1 ibrary upon which new versions are 
built. To generate a new version of the simulation 
code, the routines to be modified or added are appended 
to a standard command file, which contains the commands 
to compi le the new routines and 1 ink them to the rou
t ines in the 1 ibrary. The 1 ibrary itself is rarely 
changed. Whenever the library is modified, however, 
this modification is seen by all versions of the simu
lation code, which actually exist as different versions 
of the command file. All code is written according to 
the rules of structured programming. Modularity is en
forced by not using COMMON statements, simplifying the 
relation of the data flow to a hierarchy diagram. Sim
ulation results are similar to those of the PARMTtQ 
code, as expected, hecause of the simi lar physical 
model. Different capabilities, such as those for gen
erating beams matched in detail to the structure, are 
available in the new code for help in testing new ideas 
in designing RFQ linacs. 

Introduction 

We desired a new RFQ simulation code to test some 
new ideas for designing RFQ linacs. Frequent modifica
tions to the code would be necessary in this appl ica
tion. Our code development work considered, from the 
very beginning, the problem of producing a soft\,are 
product with the required flexibility. Ease of modifi
cation and of managing the many versions that would in
evitably arise were the major concern for the program
mi ng effort. 

From the physics point of view, the primary con
cern was the ease of changing the space-charge and 
external-force computations in the simulations. Also, 
we thought it important to be able to generate particle 
phase-space distributions, that are matched in detail 
to the accelerator structure, and to verify matched 
conditions. This capability is useful both to check 
for numerical emittance-growth effects and to prevent 
mismatch effects from obscuring other effects under 
study. 

We achieved our goals by forming a 1 ibrary fi le 
containing what we call the standard version of the 
simulation code. New versions of the simulation code 
can be generated, as requ ired, by means of command 
files that contain commands to compile any new or modi
fied subroutines and link them to the standard versions 
in the library file. This collection of files we call 
the RFQLIB system. The rules of structured programming 
were followed in all coding to make the inevitable mod
ifications easy to make. 

Organization of the RFQLIB System 

There are four kinds of files in the RFQLIB 
system. 

*This work was supported by the US Dept. of Defense, 
Defense Advanced Research Projects Agency, and Ballis
tic Missile Defense Advanced Technology Center. 

1. Library File (source or object code). This 
file contains the main program and all the subroutines 
for the standard version of the simulation code. The 
object code can be loaded and run but is really meant 
to be used as a library with the command files. 

2. Command Files. These files contain source 
code for routines that have been changed from the 
library version. They also contain the commands 
necessary to compile the new routines and to link them 
to the library routines to produce an executable code. 

3. Data Fi les. There are three types of data 
files providing information on the input distribution, 
accelerator parameters, and simulation parameters. 

4. Output Programs. 
put from the simulation 
graphical output. 

These programs process out
codes, usually to generate 

The standard command file is called kFQRZP*C. We 
use one of the available text editors as a controller 
to execute the commands in the command fi leo The 
standard command f i 1 e conta i ns no source code except 
for a dummy routine that references a routine in the 
library file, so that executing the commands in the 
fi le results in an executable fi le, called RFQRZP*X, 
consisting of the main program and subroutines in the 
library file. If a new version of the simulation code 
is desired, the new subroutines are appended to the 
standard command fi leo Any subroutines in the command 
fi le that have the same name as those in the 1 ibrary 
will replace those in the library when the executable 
code is produced. The library itself is not meant to 
be changed often. When a change is made to the 
1 i brary, however, these changes are seen by all ver
sions of the simulation code. Different versions of 
the simulation code are stored as different versions 
of the command file. 

The code structure for the standard version is 
shown in fig. 1. The important feature of this struc
ture is that the external or space-charge forces can 
be changed without any knowledge of beam dynamics or 
numerical methods. This modularity is a feature of 
structured programming. 

MAIN 
start 
read data 
gen init dist y 

do t=to to tf 

INTEG(y, t) 
start 

call SC(y) 
EXT(y,t) 
start 

call INTEG(y,t)
end do 

end 

INTEG(y,t) 
SC(y) 
EXT(y,t) 
PARAM(s) 

call EXT(y,t)-- call PARAM(s) 

end end 

Integrates equations of motion 
Computes space charge forces 
Computes external forces 
Interpolates RFQ parameters from table 

Fig. 1. High-level code structure for the standard 
version of the simulation code. 

Proceedings of the 1984 Linear Accelerator Conference, Seeheim, Germany

327



Programming Aspects 

Let us describe what we mean by structured pro
gramming as it is applied to this project. Originally, 
structured programming was a management technique that 
allowed a number of people to work simultaneously on a 
large software project. But structured programming is 
useful even for small one-man projects because it makes 
programs more understandable and easy to modify. These 
are precisely the qualities we desire in a code that is 
to be constantly modified to meet changing require
ments. One way of stating the rules of structured pro
gramming is the following: Programs must be modular 
and the modules must be connected in a simple manner. 

A simple thing to do is to consider the FORTRAN 
subprograms as modu 1 es of the overall program. Then, 
one consequence of our rules is that COMMON statements 
are not allowed. In a program with COMMON statements, 
it is impossible to determine where variables are 
defined or redefined without a detailed analysis of 
the whole program. Suppose we have a program with no 
COMMON statements, such as one of the simulation codes 
in the RFQLIB system. Then a hierarchy diagram (not 
shown in this paper) containing data-flow information 
can be extremely useful. The main program is shown at 
the top of the diagram and the most deeply nested sub
programs are at the bottom. The dummy argument 1 i st 
associated with each subprogram is shown on the dia
gram. If any actual argument 1 i st is different from 
the dummy argument list, the actual argument list is 
shown associated with the line connecting the calling 
and the called subprograms. To modify one of the sub
programs, only the code for the given subprogram needs 
to be examined. How the subprogram relates to the rest 
of the program can be learned from looking at the hier
archy/data-flow diagram. 

Within a subprogram, a consequence of our rules is 
that GO TO statements are not allowed. (Even better is 
to eliminate statement labels.) The reason is that a 
section of code containing a statement label cannot be 
understood without looking at all the code in the given 
subprogram to see if it contains a GO TO statement 
pointing to the statement 1 abel. The reason for the 
rules again is the same: To understand a section of 
code (necessary if modifications are required), it 
should not be necessary to look in detai 1 at all the 
rest of the code. In our project, we found that the 
higher level rule (no COMMON) was more important than 
the lower level rule (no GO TO). 

Physics and Numerical Aspects 
of the Standard Version 

The standard version of the simulation code is a 
particle-in-cell code computing space charge on a uni
form r-z mesh. The boundary conditions for the Poisson 
solver are a conducting circular cyl inder at a given 
radius and periodiC boundary conditions in the axial 
direction with period BA. Time is the independent 
variable. The particle coordinates and momenta and the 
position and velocity of the synchronous particle are 
the dependent variables, using X-, y-, z-coordinates. 
The equations are integrated using a first-order, 
expl icit, symplectic integrator. 

There are certain features we built into the simu-
1 ation code that we considered important for our RFQ 
design work. The ability to create beams matched in 
detail to the accelerator structure was accomplished by 
facilities for adiabatic deformation as described in 
the example below. This feature required the introduc
tion of nonphysical forces into our model of the RFQ. 

Simulation Examples 

Comparison with PARMTEQ 

We ran a simulation of the accelerator test stand 
(ATS) RFQ 1 i nac at Los Alamos 1 to compare the new 
code with PARMTEQ, the standard RFQ simulation code at 
Los Alamos. We found very good agreement. The trans
mi ss i on factor for the standard-des i gn input oeam was 
92% for the PARMTEQ run and 94% for the new code. 
Emittances differed by less than 5%, a value within the 
statistical accuracy of representing the phase-space 
distribution by a finite number of particles. The 
fundamenta 1 difference between the two codes is that 
PARMTEQ has free-space boundary conditions and the new 
code has a conduct i ng wall. The presence of the con
ducting wall decreased the axial space-charge field by 
several per cent at most. This was not a large-enough 
effect to affect the transmission factor or final 
emittance. 

Matched and Acceptance Beams 

The generation of phase-space distributions 
matched in detai 1 to a periodic structure can be done 
by adiabatic deformation.2 The previous work did not 
include space-charge forces. The new code has provi
sions for using this method to generate high-brightness 
beams matched to an RFQ structure. Such a matched beam 
has been generated for the ATS RFQ matched to a point 
1 m from the input. This was a lOO-mA beam with a nor
mal ized rms transverse emittance (area in x-Px phase 
space, divided by mnc) of 0.2 mm·mrad. When traced 
through an exactly periodiC structure corresponding to 
the l-m point of the RFQ, the matched beam is very 
nearly periodic. When we consider rms beam sizes that 
are one rf period apart, the beam-size fluctuations are 
less than 2%. 

In the presence of space charge, the acceptance of 
an accelerator is not unique. We can define an accep
tance distribution to be one that, if injected into tne 
accelerator, results in a beam well matched over the 
whole length of the accelerator. Because the parame
ters at the beginning of the accelerator are rapidly 
changing, obtaining a beam matched to a periodiC struc
ture corresponding to the RFQ entrance does not work 
well. We obtained a good acceptance distribution by 
taking the beam matched to the l-m point of the f{Flj 
and tracing it backward to the accelerator entrance. 
The 20 phase-space projections of this acceptance beam 
are shown in fig. 2. Also shown for comparison is the 
standard input beam used in the f{FQ design process. 

x (mm) y (mm) z (rum) 

] 

I~J 
" 

I~ 
" :8 1 ~ 

g g 

~ ~~ ,'.J ~ ~ 
0." 0.' 0:: 

-I 
-5 0 -5 5 -5 0 " x (mm) y (mm) z (mm) 

Fig. 2. Phase-space projections for the acceptance 
beam (top row) and the standard input beam for 
the ATS RFQ (bottom row). 

Proceedings of the 1984 Linear Accelerator Conference, Seeheim, Germany

328



The acceptance beam has a transmission factor of 100% 
(no particles lost) and practically no emittance 
growth. Of course, creating such beams is not practi
cal in the laboratory. We believe the utility of such 
computations is in designing the low-energy part of RFQ 
linacs. We can vary the RFQ parameters and compute the 
acceptance distributions for the various cases, choos
ing the case for which the acceptance distribution is 
closest to a physically attainable distribution. 

Discussion 

The new RFQLIB simulation system has been designed 
to be easily extended to include new versions of the 
code as new requirements arise. We believe this tech
nique to be very successful. Storing a standard ver
sion of the simulation code as a library simplifies the 
maintenance of the various versions of the code. Be
cause of the integrated nature of this system, a single 
manual documenting the whole system has been written. 3 

The capability of generating matched distributions 
by adiabatic deformation is an important feature of the 
standard version of the simulation code. This allows 
us to factor out input beam effects from accelerator
structure characteristics. For example, we have 
learned that the ATS RFQ design can transmit a 100-mA, 
0.2 mm"mrad emittance beam with no transmission loss, 
rrovided the input distribution is properly chosen. 

References 

1. E. A. Wadlinger, J. A. Farrell, and H. O. Dogliani, 
"A High-Brightness Negative Hydrogen Linear Accel
erator," 7th Conf on Application of Accelerators in 
Research and Industry, Denton, Texas, November 7-
10, 1982. 

2. W. P. Lysenko, "Matching Bunched Beams to Alternat
ing Gradient Focusing Systems," IEEE Trans, Nucl. 
Sci.l§., 2516 (1981). 

3. W. P. Lysenko, "The RFQ Simulation Code Library 
RFQLIB and Associated Codes," Los Alamos National 
Laboratory unpublished report ATN-84-1 (January 
1984) . 

Proceedings of the 1984 Linear Accelerator Conference, Seeheim, Germany

329


