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Summa ry 

A model for space charge effects in hollow 
beams is presented. A particular case is 
treated for hollow beams accelerated in a rf 
coaxial structure in which strong transverse 
focusing is present. The beam emittance is 
treated in cylindrical coordinates so that 
the forces in the beam can be calculated with 
respect to the curved, equilibrium trajectory 
surface. Analysing the focusing forces about 
this surface, whose curvature is a characte
ristic of the strong focusing, enables the 
forces to be treated in linear approximation. 
The space charge forces are also treated in a 
linear approximation by considering the beam 
bunch as a toroidal ring of elliptical cross
section. The space charge limited currents 
derived can be used to evaluate conditions 
under which the rf coaxial structure is a 
suitable device for producing intense beams. 

Introduction 

The rf coaxial structure 1 is a spatially 
continuous focusing device for the accelera
tion of high currents in the form of hollow 
beams. The principle of operation of such a 
device is in many respects analogous to that 
of the Radio Frequency Quadrupole accelera
tor, except that the large annular aperture 
of the coaxial structure suggests an advan
tage in the acceleration of higher currents. 
This paper examines the nature of the space 
charge forces in a bunched hollow beam that 
place upper limits on the amount of current 
that can be transported. The space charge 
limits in dc hollow beams is also being ex
perim~n5ally investigated at the GSI Darm
stadt' • The procedure followed here is that 
described by Gluckstern 4 for calculating 
space charge limits in linear accelerators 
in which the limiting current occurs when the 
defocusing due to space charge is just ba
lanced by the restoring, focusing forces in 
the channel. This ~rocedure has also been 
applied by Wangler, for example, to find 
current limits in RFQ's. 

The analysis here for hollow beams differs 
in that the space charge is distributed in
side a toroid instead of in an ellipsoid as 
for axial beams. Furthermore, both the focus
ing forces and the space charge forces act 
about a reference surface that is displaced 
from the axis of the system and no longer 
follows a straight line, as is seen in fiq. 1. 

z 

Fig. The beam envelope in a strong fo-
cusing channel for hollow beams is modulated. 
All the forces are calculated with respect to 
a reference trajectory surface, shown as a 
dashed line. 

As a first step toward calculating the 
tune depression in a focusing chgnnel result
ing from the beam's space charge, the emit
tance of a hollow beam is defined. 

Emittance of a Hollow Beam 

It is more reasonable to chose polar coor
dinates rather than cartesian coordinates to 
describe the emittance of a hollow beam. If 
cartesian coordinates are chosen then a hol
low beam occupies all x- and y-values over 
the diameter of the hollow beam and there is 
no indication of the correlation between x
and y-values that define the annular cross
section of the beam. In polar coordinates, as 
shown in fig. 2, the beam is described by a 
radial emittance in the r-r' plane and an 
azimuthal emittance in the 9-9 1 plane. The 
hollow space in the centre of the beam is 
evident by the displacement of the radial 
emittance from the origin in the r-rl plane. 

o. 
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Fig. 2: Emittance definition for hollow beams 

a) Polar coordinates in the annular cross
section of the beam 

b) Radial emittance measured across a radial 
section of the beam is represented as an 
elliptical surface displaced from the ori
gin. 

c) Azimuthal emittance measured around the 
circumference of the beam incorporates 
the angular momentum of the particles. 
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To arrive at a correct definition of the 
four-dimensional transverse emittance one can 
start with a ribbon beam and describe its 
emittance in cartesian coordinates, namely 

'IT x x' max max 
( 1 ) 

If the ribbon beam is now curved back on 
itself to form a beam of annular cross-section 
the emittance E measured across the width of 
the beam remain~ the same but the emittance 
Ey must be measured around the circumference 

of the annulus. Changing to polar coordinates 
we have Ymax = R 9 max and Y'max = R S'max 

where for a full annular beam S = TI. In po-
lar coordinates the transverse ~~~ttance of a 
hollow beam is thus 

x x' 
max max 

e' max 
(2 ) 

The quantity E is the area of the ellipse 
in the r-r' planershown in fig. 2b and is a 
constant of the motion in systems in which 
there is no coupling between the radial and 
azimuthal motions (i.e. in the absence of 
longitudinal magnetic fields.). The azimuthal 
emittance Ee is also a constant of the motion 

and is consistent with the conservation of 
angular momentum of the individual particles. 

Space Charge Forces in a Hollow Beam 

The effect of space charge on a hollow beam 
differs according to whether an electrode is 
placed on the axis of the system or not. In 
the absence of any electrodes the space charge 
forces will only act radially outwards and 
cause the beam to grow in diameter. However, 
an electrode at ground potential, for example, 
at the centre of the beam can alter the poten
tial variation across the beam so that the 
space charge forces no longer act to change 
the average diameter of the beam but Cause the 
width of the annular cross-section of the beam 
to grow. The latter case is of interest here 
because we are concerned with hollow beams in 
strong focusing systems where the inner space 
of the beam is always occupied by an electrode. 
In our modelling of the space charge forces we 
therefore consider them to act linearly about 
the midsurface of the beam. 

In a hollow beam that is also longitudi
nally bunched we assume that the charge is 
uniformly distributed in a toroid whose radial 
cross-section is an ellipse, as shown in fig.3. 
The space charge density in such a toroid is 

AI p = (3 ) 

when the current in the linear accelerator is 
I, the rf wavelength is A and the dimensions 
R, a and b are as defined in fig. 3. 

The electric fields, in the frame of refe
rence of the bunch, due to the space charge 
can be written 

E P x Mx E ~ (4) 
x = ~ z Eo 

and E
r

, the electric field which causes the 

diameter of the toroid to grow, is zero due to 
the presence of axial conductors. Here Mx and 

M
z 

are geometrical form factors for the toroid 

and are a function of the ratio b/a of the 

semiaxes of the elliptical cross-section. 
They satisfy the relation 

M + M = 1 (5 ) 
x z 

and can be approximated, for a < 2b, by 

(6) 

The transverse eq. of motion of the par
ticles under the influence of space charge 
forces only is 

ym 
o 

q E 
x 

(7 ) 

Since the space charge acts to defocus the 
beam we can use eq. (7) to define a focusing 
phase advance per &A =ell, which, with the 
help of eq. (3), (4) and (5), is given by 

- q n 
2 

c 11 

(l-M ) 
z (8 ) 

Defining the space charge defocusing in 
this way allows us to compare its magnitude 
with the restoring, focusing forces in an 
accelerator. The transverse space charge fac
tor is defined as the ratio of these two 
quant it ies 

~t (9 ) 

The transverse focusing that remains 
the space charge depression is now 

after 

2 
( 10) 

so that ~t can also be written as 

Fig. 

b 

Space charge forces in a bunched 
hollow beam are analysed by con
sidering the charge to be uniformly 
distributed inside a toroid having 
an elliptical cross-section. 
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Similarly, for the longitudinal defocusing due 
to space charge, 3 

2 - q I A Mz 
°scI 2 2 3 

2 Eo c n moc y X b R 

and the longitudinal space factor is 
2 

° sc I 
~l --2-

°oz 

\ 12 ) 

( 13 ) 

Focusing Forces Acting on a Hollow Beam 

In a coaxial structure l the radial electric 
field provides strong focusing for hollow 
beams. The zero-current transverse focusing 
phase advance per cell is given by 

q V A 2 X q Emax A 2 X 
000 "2 2 (14) 

4 n/2 moc y R a 2n /2 moc y R 

where the width of the minimum clear aperture 
between the inner and outer electrodes is 2a 
and E is the maximum electric' field at the 
surfa~~xof the inner conductor. The quantity 
X is a focusing efficiency factor whose value 
< 1 and depends on the amplitude of the modu
lations on the electrodes which produce the 
accelerating field. 

Longitudinal restoring forces on the bunch 
are supplied by the accelerating field. The 
modulations on the coaxial structure provide 
a longitudinal electric field of magnitude 
EoT along the midsurface of the hollow beam 
where T = n/4 is the transit time factor and 
Eo is the amplitude of the longitudinal field. 
Since this quantity is independent of the dia
meter of the hollow beam, the longitudinal 
motion of the particles is described in exact
ly the same way as in conventional linear 
accelerators. The longitudinal focusing phase 
ad va nc e is 

( 15) 
m c 2 B 3 

a y 

where 0 is the synchronous phase angle for 
the strcrcture. Phase stability requires that 
o be negative which implies that transverse 
d~focusing will occur as a consequence of the 
rf acceleration. The transverse focusing 
strength that includes this rf defocusing is 

2 
= ° 00 

2 
- ° oz 

( 16 ) 

This transverse focusing confines the 
transmitted beam within the minimum clear 
aperture of the system. In £rder to relate the 
average beam envelope size X in eq. (8) to the 
aperture half-width a we make use of the enve
lope modulation factor defined as 

B X R 
tjJ (~)1/2 ~ ~ 

B
min 

X
min 

R
min 

The envelope modulation factor is independent 
of space charge, as is seen, for example, in 
the for~ of the betatron function given by 
Wangler where ~ can be calculated as a func
tion of (j 

°t 

As a result of the strong focusing, the 
midsurface of the hollow beam is deflected 
between Rmax,and Rm'n so that the effective 
aperture ava1lable to the beam is 

a l = a - R 

If the structure is carrying the maximum cur~ 
rent determined by the limit of the trans
verse focusing, then the maximum in the beam 
envelope Xmax will just fill the available 

aperture a'. 
used in eq. 

The mean value for the envelope 
(8) can then be written as 

x = (X X,) 1/2 = a' 
max m~n tjJl/2 

\ 18) 

The maximum bunch length, 2b, is found 
from the limits of the phase stable area. The 
phase stable area is reduced under the in
fluence of space charge so that 

3 B " 
b = 

4n 
( 19) 

If ~l is chosen to be equal to 1/3 it will be 
g"'E!en that tRe- longitudinal current is at a 
maximum, and for this special case of a fixed 
longitudinal space charge parameter we get 

b = (20 ) 

Current Limits 

If the limits to the bunch dimensions de
fined in eq. (18) and (19) are used in eq. (8) 
the current in this equation becomes the 
transverse space charge limited current. Using 
(9) this current limit can be written 

3 E c 
2 3 aiR B 10 s 1 ( 1- ~ I) n m c y ~t ° 0 0 °t 

It 
1.

2 tjJl/2 (l-M ) 2 q 
z 

( 2 1 ) 

The expression is applicable in situations 
where restrictions are placed on a as is 

°t 
the case, when a < n/2 to avoid resonanc es 

°t 
and instabilities 7. However, it 
ly that the restrictions on a 

°t 

is more like
will occur 

first as a result of maxinum electric field 
strengths imposed by sparking limits. Incor
porating eq. (14) and (16) gives a transverse 
current limit 

I = 
t 

3 Eo C q Y a' B 

16 n m c 2 
o 

2 2 
0 00 -Ooz 
(-=-72=-

0
00 

;.2 E 2 
max 

2 

R 4'1/2 (l-M ) 
z 

Following the same procedure for the 
dinal space charge in eq. (12) gives 
longitudinal current limit, 

I = 
I 

Eo c n
2 

R a' EoT 1°5 1 sin Os ~l 
tjJ 1/2 M 

(22) 

longitu
the 

z 

Using the approximation 
this becomes 

fa r M 
z 

(23) 

in eq. (6) 

120 c TT RIB Eo T 

(24 ) 
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which has a maximum value when ~l = 1/3, 
leading to the commonly used expression for 
the bunch length in eq. (20). 

Discussion 

The essential difference to conventional, 
axial beam accelerators that emerges from this 
analysis is the dependence of the beam current 
limits on the size of the hollow beam radius 
R. In the case where an upper limit is placed 
on a , the current increases linearly with 

°t 

the aperture a I and radius R as in eq. (21). 
However, when the upper limit is determined by 
the maximum allowable field strength, then the 
current is proportional to a'/R. The longitu
dinal current limit, on the other hand, always 
increases in proportion to i. The optimum 
hollow beam radius at which the transverse and 
longitudinal current limits are equal is found 
by equating (22) and (23), giving 

2 B ,,3 2 2 
q Y E X a -a max ( 00 oz 

R 
3 2 2 

) 

161T m c EoT s in~ a oo 0 s 

M 
~ __ z_ 

(25) 
1-M z ~ 1 

Using this value for R in either eq. (22) or 
(23) gives an expression for the maximum cur
rent when the longitudinal and transverse li
mits are equal. 

I max 

sin0 )1/2 a' 
s 

4 (m c
2 

tjI M 
o z 

(I-M )1/2 
z 

2 2 
a -a 

(00 OZ) 1/2 
2 

( ) 1/2 
~t ~l 

aoo 

E 
max 

(26 ) 

which also has a maximum for ~l = 1/3. The 
transverse space charge factor should, on the 
other hand, be chosen as close to 1 as possib
le before running into undesirable non-linear 
effects. Most of the remaining parameters in 
eq. (26) are determined by practical conside
rations arising from the area of application 
of the accelerator. The current limit is also 
strongly dependant on the maximum field 
strengths that can be tolerated in the struc
ture. An upper limit will be placed on the 
value of the transverse space charge factor 
~ according to the quality of the beam emit
t~nce and the degree of tune depression that 

is tolerable. The main task of the designer, 
then, is to optimise the focusing strengths so 
that the term 

a' 
2 2 

(a oo -aoz 
2 

aoo 

in eq. (26) is a maximum. 

Evaluating eq. (25) and (26) gives a guide 
as to the suitability of using hollow beam 
geometry in a given application. Other values 
for the beam radius may be chosen than that 
dictated by eq. (25), which will lower the 
current from its optimized maximum. Practical 
accelerator designs, however, usually involve 
some compromises. This analysis gives a use
ful indication of the dependance of the beam 
current on the parameters of the beam and the 
structure, but it should not be forgotten 
that it is an approximation which does not 
include the many non-linear effects that can 
arise in an accelerator. 
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