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Summary 

To simulate time dependent electromagnetic 
field, a computer code named . TWA-program . 
( Transient Wave Analysis program ) was 
developed. The TWA-program solves the wave 
equation of the vector potential, and shows 
field lines on a computer graphic display. It 
was applied to solve problems such as the 
traveling microwave in a rectangular waveguide, 
the dipole radiation and beam induced field in a 
cavit)1 structure. 

Introduction 

In recent accelerator technology, it becomes 
important to understand the time dependent 
phenomena of the electromagnetic field; for 
example, the transient ,'esponse of an accele
rating structure against the pulsed microwave 
and the short time beam loading, i.e., the wake 
field loss in a cavity. 

In C8se of the two-dimensional field or the 
axi-symmetrical field, the vector potential has 
Gnly one component which gives all field para
meters. We call this vector potential wave 
potential in this paper. The wave potential 
propagates in a space according to the wave 
equation. The field lines are given by the equi
potential 1 ines of the "'ave potelltial. TWA
program solves the wave equation of the wave 
potential using the finite difference method, 
and draCJs the equ i potent i all i nes on a computer 
graphic display. 

The BCI-program1) has been used to calculate 
the beam induced field in a cavity. The memory 
size of TWA-program is smaller than that of BCI
program; about one th i ru, because TWA-program 
treates only one field parameter, i.e., the "'ave 
potent i a I, on the other hand BC I -program so 1 ves 
three fie I d parameters of Er, Ez and H (J' In 
addition, the process of calculation is simpler 
than that of BCI-program. 

Wave Equation of Vector Potential 

In a charge-less region, we can define the 
electric vector potential G as follows. 

E = VxG ( 1 ) 

The wave equation of the electric vector 
potential is given by the Maxwell equations 

V2 ij2 -
C~t2 )~ = 0 2 ) 

The r'elation between the electric vector 
potential G- and the magnetic field B is 
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For the magnetic vector potentia I, similar 

expr~ssions are given as fo II Ows 
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In case of the two-dimensional field, there 
are TE and TM-modes as illustrated in fig. 1. 
For the axi-symmetrical field, there are also TE 
and TM-modes as Fig. 2. The field components 
and the wave potentials of these modes are 
listed in Tab Ie. 1. 
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Fig. 1. Modes of the two-dimensional field. 
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( a ) TM-mode. The magnetic field and 
the electric vector potential have 
only the z-component and smooth in z
direction. 

( b ) TE-mode. The electric field and 
the magnetic vector potential have 
only the z-component and smooth in z
direction. 

( a ) z ( b ) z 

Fig. 2. Modes of the axi-symmetrical field. 
( a ) TM-mode. The magnetic field and 
the e~ectr-ic vectcr potent:"al ;-,a'y~ 

only the 8-component and smooth in &
direction. The beam induced field is 
also TM-mode. 
( b ) TE-mode. The electric field and 
the magnetic vector potential ~ave 
only the 8-component and smooth in 61-
direct:oc-,. 

TABLE 

:=IE:"'~ ?ARAMETERS ::= THE !'-':CCES 

Coordinate Two-dimensional Axi-symmetrica1 

Mode Name TM TE TM .t: 

Wave Potential 
( U ) Gz Az rG(J rAe 

Equipotential 
Lines E B r£ ci3 

Transverse 
Field Bz Ez Be t:e 
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The wave equations ( 2 ) and ( 5 ) have the 
same form, so that the TE and TM-mode can be 
solved by the same program except the boundary 
conditions. For the two-dmensional field, the 
wave equation becomes 

~ E _~ -( ax2 + aiP C2(}t2) U-O, (7 

where U is the wave potential listed in Table 1. 

For the axi-symmetricl field 

Q!. 1 a 1 ;)2 a2 

( o/,"2-y'jf- + P + Jl2 -C2 Jt 2 )U=O,( 8 ) 

where U is rAe or rGe . 

The beam induced field in a cavity 
structure is a kind of the axi-symmetrical TM
mode, and the wave potent i ali s rGS ' I f there is 
a charge in the calculating region, the 
divergence of the electric field is not zero and 
the electric vector potential can not be given 
uniquely by eq. ( 1 ). To avoid this difficulty, 
the beam is assumed to be a line charge with 
zero diameter. In this case the beam is consi
dered as flux source on the axis. The boundary 
condition at the axis is given from eq. ( 3 ) 

[r-GeJ= l.f rHe· dt 

r=o 1 J = W. j·dt 

= 2~~.JS(j!)·dz, ( 9 ) 

where the Ampere's law was used and the beam is 
assumed to be running with constant velocity. 

J ('I!) is the 1 ine charge density. 

Numerical Calculation 

The calculating region 
meshes as shown in fig. 
equations of the potential 
as follows. 

is divided into the 
3. The difference 

eqUation9 are given 

For the two-dimensional field. 
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For the axi-symmetrical field, 
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where T is the normalized time ct,. and N is the 
number of the time steps. 

The wave potenatial U should satisfy the 
boundary conditions listed in table 2. where the 
free boundary means that the wave can propagate 
the boundary without any reflection. ~ is the 
unit vector which is normal to the boundary. 

The integra I time step ll. T must be sma 1 1 er than 
convergence limit given by the following 
equations. In case of the two-dimwnsional field. 

2 (1 1 
Ll T • L1 Xl + tJ:J2 < 1. ( 12 ) 

For the axi-symmetrical field. 

jj r2. ( Lj ~2 + 11 ~ 2) < 1. ( 13 ) 

Fig. 3. 
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Boundary 

The rectangular mesh for the finite 
difference method. 

TABLE I I 

BOUNDARY CONDITIONS 

Two-dimensional Axi-symmetrical 

TM TE TM TE 

Conducting 
Boundary 'cIGlan O. Az = O. d(rGa)18n = O. rAe = 0 

Symmetric 
Boundary Gz = O. aAzlan = O. rGe= O. J(rAe)lan = 0 

Appl ications 

Traveling Microwave 

The field of the traveling TE-mode in a 
rectangular waveguide does not have spatial 
dependence along the direction of the electric 
field. Hence. the field is two dimensional TE
mode. 

Fig. 4 shows the magnetic field liens of 
traveling pulse microwave. The wave source 
TEIO-mode is located at the left boundary. 

the 
of 

The 
head wave packet deminishes gradually. This is 

is due to the fact that the group velocity 
smaller than the phase velocity ( dispersion ). 
and the head wave packet loses its energy. 

Fig. 4. 

2Dlo 
3 

The propagation of the 
microwave. The mesh SIze 

40. The width of the wave 
10 cm and the frequency is 

pulsed 
is 10 x 
guide is 
2600 MHz. 
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Fig. 5 shows pulsed microwave traveling In 
the rectangular wave guide with an iris (a ) 
and a rod ( b). The microwave is partially 
reflected at the iris and the rod, 50 that the 
field density at the left hand side becomes 
greater than the right hand side. A comparison 
of these field densities gi,'es the reflection 
coefficient and the transmission coefficient. 
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Fig. 5. 

a ) ( b ) 
Poropagation of microwave in a 
rectangular wave guide with ( a 
an iris, (b) a rod. The right 
end 1 ine is the free boundary. The 
mesh size is 10 x 40. 

Beam Induced Field in a Cavity 

Fig. 6 shows the beam induced field in a disk 
loaded accelerating structure. The electric 
field on the axis is derived from eq. ( 1 ): 

E = 1. .l.. ( r G-e ) 
$ r- ar- 14 

The wake field potential is given by 
integrating eq. (14) about the time along the 
beam propagation. 

(1) t = 150 psee 

(2) 1S3psec 

I 
(3) 217 psee 

Fig. 6. Beam induced field in a disk loaded 
accelerting structure. The mesh 
size is 20 x 100. 

Dipole Radiation 

The field of the dipole radiation is the 
axi-symmetrical TM-mode. The moving charges are 
approximated by the line beams on the axis with 
bunch length equal to the diameter of the charge. 

Fig. 7 (a) shows the dipole radiation in 
case of the maximum velocity f3max is equal to 
0.5. The direction of the motion is shown by the 
arrows. Fig. 7 ( b ) is the case of {3max = O.B. 
It is not necessary to say about the frequency 
and the amplitude of the oscillation, because 
the radiation pattern is determined only by the 
maximum velocity fmax, and there is a scal ing 
law about the pattern dimension and the 
frequency. 

Fig. 7. 

( b 

The electric field pattern of the 
dipole radiation. The maximum 
velocity of the osci llation is 
( a ) f3 ma x 0 .5, 
( b ) (3 ma x = O. B. 
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