
ELECTRON MOTION IN SOLENOIDAL MAGNETIC FIELDS 
USING A FIRST-ORDER SYMPLECTIC INTEGRATION ALGORITHM* 

J. S. Fraser, Group AT-7, MS-H825 
Los Alamos National Laboratory, Los Alamos, New Mexico 87544 USA 

The use of nonsymplectic procedures in particle 
tracing codes for relativistic electrons leads to 
errors that can be reduced only at the expense of using 
very sma 11 i ntegrat i on steps. More accurate resu lts 
are obtained with symplectic transformations for posi
t ion and momentum. A first-order symplectic integra
tion procedure requires an iterative calculation of the 
new position coordinates using the old momenta, but the 
process usually converges in three or four steps. A 
first-order symplectic algorithm has been coded for 
cylindrical as well as Cartesian coordinates using the 
relativistic equations of motion with Hamiltonian vari
ables. The procedure is applied to the steering of a 
beam of 80-keV electrons by a weak transverse magnetic 
field superposed on a strong magnetic field in the ax
ial direction. The steering motion is shown to be par
allel to the transverse field rather than perpendicular 
as would be the case without the strong axial field. 

Introduction 

In a typical high-current electron injector for a 
linac, a solenoidal focusing field is required to 
transport the beam through the buncher drift space. 
To aim the beam precisely on the 1 inac axis, a weak
steering magnetic field can be superposed orthogonally 
to the focusing field. The electron motion is compli
cated in the combined fields. Initial attempts at 
numerical integration of the electron's equations of 
motion using a simple, nonsymplectic transformation 
revea 1 ed 1 arge errors in pos it i on and momentum. A 
high-order Runge-Kutta numerical integration procedure 
can be used, but the number of function evaluations per 
step is large. 

An alternative approach, based on a symplectic in
tegration algorithm l

-
3 aChieves an accurate result with 

a modest number of function evaluations per step. The 
relativistic Hamiltonian for a particle in a static 
magnetic field is used Ivith Hamilton's equations of 
motion. The resulting integration procedure is applied 
to studying the steering of an 80-keV electron beam in 
a combined strong axial and weak radial magnetic field. 

First-Order Symplectic Transformation 

At each integration step, with time as the inde
pendent variable, the canonical variables q and pare 
advanced in the time interval h according to the trans
formations q ; qo + hq, and p ; Po + hp. Channel1 2 has 
shown that the lowest order symplectic transformation 
is given by the equations of motion 

aH (q,po) and q - apo , 

aH (q,po) p - aq 

where the Hamiltonian is a function of the new position 
variables q and the old momentum variables Po' 

The q transformation is an implicit function of q 
that must be evaluated by iteration using the old mo
mentum po. Following the iteration, the force term is 
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evaluated at the new position with the old momentum. 
Intrinsic properties of the symplectic transformation 
are the conservation of energy and the fact that the 
determinant of its Jacobian matrix is unity,I,' imply
ing that Liouville's theorem is satisfied. A nonsym
plectic transformation results if q is replaced by qo 
in the equations of motion. 

For motion in a static magnetic field, the 
relativistic Hamiltonian 

H ; ymoc2 ; [m;c4 + c2(p - eA)2Jl/2 

gives the following set of symplectic transformations 
for canonical variables in Cartesian coordinates: 

x ; xo 
+ _h_ 

ymo 
(pxo - eAx) (1 ) 

Y ; Yo +_fl_ 
(pyo - eA ) (2) 

ymo y 

zo 
+ _h_ (pzo - eAz) (3) 

ymo 

+ he [( 
aA al\ 

Pxo eAx) _x + (p - eA ) -1 
ym

o 
Pxo ax yo y dX 

+ (pzo - eAz) aAz] 
ax 

(4) 

+ he [( 
aA aA 

Pyo 
_x + (p _ eA ) -1 

ym
o 

Pxo- eAx) oy yo y oy 

+ (pzo - eAz) a:~ ] , and ( 5) 

+ he [( 
aA aA 

Pzo eAx) _x + (PyO - eAy) -1 
yM

o 
Pxo- az az 

aA ] + (p _ eA ) _z 
zo z az \6) 

where it IS understood that Aq ; is the q component uf 
the vector potential A(x,y,z). The (p - eA) terms are 
the mechanical momenta. For eqs. (1) to (6), the value 
of the determinant for the Jacobian matrix of the 
transformations was found to be one to within the 
round-off error of the computer. 

Electron Motion in Complex Magnetic Fields 

The steering problem discussed in the introduction 
can be simulated accurately by superposing magnetic 
fields and vector potentials produced by orthogonal 
arrays of circular coi ls. A code was written to inte
grate the equations of motion using the symplectic 
transformations of the previous section. The sub
routines that computed the magnetic-field dnd vector
potential components and the nine partial derivatives 
in eqs. (4) to (6) were checked numerically to ensure 
that V • A ; 0 and that the magnetic-field components 
were consistent with B ; V X A. Space-charge forCes 
were ignored. 
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At each step of the integration, eqs. (1) to (3) 
are solved by iteration, the vector potentials being 
evaluated at the n'7w position. An absolute error of 
not more than 10- m in position was found to be 
adequate for a typical problem. The vector potentials 
and partial derivatives at the new position were then 
used in eqs. (4) to (6). 

Electron Motion in Combined Focusing 
and Steering Magnetic Fields 

Combined focusing and steering magnetic fields 
such as those used in the 80-keV electron injector of 
the Los Alamos National Laboratory free electron laser 
linac are simulated by two orthogonal arrays of circu
lar coils as shown in fig. 1. The longitudinal and 
transverse fields from such a coil set are illustrated 
in fig. 2. For an illustrative calculation, a beam of 
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Fig. 1. Schematic diagram of two orthogonal arrays of 
coils simulating the combined use of focusing 
and steering magnetic fields. 
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Fig. 2. Longitudinal and transverse magnetic fields 
from a coil set similar to that of fig. 1. 

electrons in a narrow, hollow cone is launched on the 
z-axis of the focusing field. The position and shape 
of the beam are shown at six z-locations in fig. 3. It 
is interesting to note that when the steering field, 
here in the y-direction, is weak in comparison with the 
focusing field, the steering of the beam centroid is in 
the plane of the steering field and not perpendicular 
to it. 
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Fig. 3. Transverse bealll profi les at six locations in 
the field of fig. 2 for a hollow cone of 
80-keV electrons. The centroid is steered 
parallel to the steering component field By. 

Figure 4 shows the transverse coordinates of a 
single particle and the fractional error in the total 
momentum. The degree of accuracy in conserv i ng tota 1 
momentum or energy is a useful criterion of the inte
gration algorithm's accuracy. The fractional momentum 
error in fig. 4 is cyclic in the fring~ng-field regions 
with a maximum value of about 5 x 10- for a step size 
of 10-ps that corresponds to about 76 steps per cyclo
tron period. The momentum error scales approximately 
linearly with the step size. 

BEAM STEERING, ~EAK RADIAL AND STRONG AXIAL FIELOS-SYMP 

TIME STEP - 10.0 PS 
X 
Y 
DELTA PIP 

~+-~--~--.-~~~~~~~~~~ 
0.0 15.0 30.0 ",S.O 60.0 75.0 90.0 105.0 120.0 \35.0 \50.0 

Fig. 4. 

Z ICMI 

Transverse coordinates and fractional 
momentum error for an 80-keV electron 
in the field of fig. 2. 

When a focusing field is not superposed on a 
steering field (the usual case), the expected result 
is as shown in fig. 5 for the same steering field 
given in fig. 3 as By. Here the centroid motion is 
perpendicular to the steering field, and the steering 
effect is much enhanced. For axial fields between zero 
and a value large compared with the radial field, the 
steering direction varies frolll perpendicular to the 
radial field to parallel to the radial field. 
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BEAM STEERING: ~EAK RADIAL fIELD ONLY 
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Fig. 5. As in fig. 3, but with only the By field 
component present. The centroi dis steered 
perpendicular to the steering field By. 

Comparison of Runge-Kutta, Symplectic, and 
Nonsymplectic Procedures 

Electron motion in the combined fields of fig. 2 
was computed with a standard fourth-order, adapt ive 
Runge-Kutta procedure, the first-order symplectic 
transformation of eqs. (1) to (6) and the first-order 
nonsymplectic transformation that results from evaluat
ing the vector potential at (xo,yo,zo). The result of 
the nonsymplectic calculation corresponding to the sym
plectic calculation shown in fig. 4 is given in fig. 6. 
The momentum error grows monotonically and the trans
verse motion is unstable. By contrast, the use of the 
Runge-Kutta routine gives a hiqhly accurate result as 
shown in fi g. 7. 

BEAM STEERING: WEAK RADIAL AND STRONG AXIAL fIELDS-RK 
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Fig. 6. As in fig. 4, but with integration 
by a nonsymplectic transformation. 

For the field of fig. 2, a summary of the results 
obtained with the three procedures is given in table I 
for a range of step sizes. The step size is given in 
terms of the steps per cyclotron period at the Bz-field 
maximum where the period is approximately 0.76 ns for 
80-keV electrons. 
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Fig. 7. As in fig. 4 both with integration by a 
fourth-order Runge-Kutta procedure. 

TABLE I 

iG 
'i' 

COMPARISON OF RESULTS FROM THREE INTEGRATION PROCEDURES 
FOR 80-keV ELECTRONS IN THE MAGNETIC FIELD OF FIGURE 2. 

Time 
Steps Per 
Cyclotron 

Period 

Function 
Calls Per 
Cyclotron 

Period 

Relative 
CPU 
Time 

Fractional 
Momentum 
Error 
/} pip 

Fourth-order 
Runge-Kutta 760 5320 68 1 x 10- 11 

76 547 7 2 x 10- 9 
7.6 304 2.1 1 x 10-8 

First-order 
symplectic 760 1520 19 5 x 10-6 

76 290 3.4 5 x 10-5 
7.6 114 1 5 x 10- 4 

First-order 
nonsymplectic 760 760 11 3 x 10- 2 

76 76 1.3 3 x llJ- 1 
7.6 7.6 f ai led 

Clearly the Runge-Kutta procedure gives an accu
rate result even with 7.6 steps per cyclotron period. 
I f a high degree of accuracy is requ ired, th i s proce
dure is the preferred one. The first-order symplectic 
algorithm gives an accuracy acceptaole for most pur
poses with a reduction in computer time. The nonsym
plectic algorithm, on the other hand, although economic 
in function calls per step, is acceptable only for very 
small time steps. 

Conclusions ---------
A first-order symplectic algorithm for integrat

ing the relativistic equations of motion for electrons 
in complex magnetic-field configurations is more accu
rate than a nonsymplectic algorithm. Although the 
fourth-order Runge-Kutta procedure is far more accurate 
than the symplectic algorithm considered here, the 
latter is simpler to use and of sufficient accuracy for 
most beam-transport applications. 
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