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1. This is a brief report of the results 
obtained in our papers /1,2/. The subject is 
the heating of the beam, i.e. increasing of 
its phase space volume or partial temperatu
res, due to intra beam scattering (IES). 
Though consideration in Refs /1,2/ was done 
for ring accelerators, some of the effects 
discussed there probably can be important in 
linear accelerators. Especially in machines 
with strong focusing, which e;ive additional 
modulation of fields induced by particles. 

It is well knOI'!J1 that in the simplest 
case IBS equalizes transverse and lone;itudi
nal temperatures, which cause a redistributi
on of emittances in the beam. If such redis
tribution is not desirable, this effect li
mits the phase space density of the beam. 

The effect of focusing fields makes the 
kinetics of IES more complex /3,4/. In this 
case all collisions can be divided into fast 
( t", W,,-« 1, tc - typical collision time, 
w~ - oscillation frequencies in the focu

sing fields) and adiabatical (teUJ",">.i ) 
collisions. For adiabatical collisions the 
energy transfer to oscillatory degrees of 
freedom is depressed exponentially. So, the 
redistribution of partial phase space volumes 
(the thermolization of the beam) in an exter
nal field is caused by fast collisions. 

The nature of forces, which are leading, 
dependes on beam parameters. For low energi
es and high beam density relaxation can be 
caused by Coulomb scatterings. For high ener
gy and high beam currents collision of parti
cles with wave fields, can be more signifi
ce,nt. 

It was shown :i.n Ref. /4/ that jn a strong 
focusing machine Coulomb scattering blowups 
the total phase space volume of the beam. 
This was studied more straightforward in 
Ref. /1/. It turms out, that this is a speci
fic feature of collisional relaxation provi
ded that the interaction of two particles in 
the beam is modulated by motion along the 
equilibrium trajectory. 

Before discussion of results obtained in 
Ref. /1/ let us introduce some definitions. 
Evolution of the distribution function in 
the beam is governed by stoss integral. In 
our case the calcUlation of the stoss integ
ral should take into account that motion of 
particles in an accelerator is a combination 
of motion along some central trajectory and 
oscillations around this trajectory. The in
teraction of particles leads to small dis
turbances of this unperturbed motion. We 
shall also assume that collision times are 
always much shorter than the period of phase 
oscillations. Then the motion around the 
central trajectory can be described /5/ by 

X -= X + 1, ~ h Llp = (J - D ;; == D d ( b I ~ ) Irs, /..1. r& -- , 
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which make canonical transformation from va
riables (i ';0-) to integrals of unperturbed 
motion (I~, ~. I Ap, 6. ). We use p. == l:.'~'fZl.r .
- the momentum of synchronous particlEf, Cox oeta
tron emittances, the betatron functions'Z 
f->~li{6') and ?'XI~(ti) have the period of the 
lattice 

Instead of 6 it is more convenient to int
roduce, the angular variable Y1,::: ,2;:(6'-(),,} /L~. 
Then <r:,=CJ.(p), w.=2;;r/Lo, ws=C.J'(Ps), 

R..=:;i;IJ/~) I,,-=RoAp) f.))(,i,=t..J.(p)Vx ,,,, 

and the betatron phase advance on the lattice 
period is ,2/()) • In variables (I , <fl) the 
hamiltonian of unperturbed motion is especi
ally simple 

.I 2 _-"> 

:If. - £.s = ~ .l~, -f ~ = w~ ~I + ~ + t.VJ-IJ.J 
:lfilt (2) 

where Es is the equilibrium energy and /f'r = 
= {R. dfJo/tY'p )-1 is the effective mass of 
longitudinal motion. In linear accelerators 
there is no contribution from dispersion nems 
('" ~ and '7' ). Due to nonlinearity of focu
sing, the tunes j)X1t depend on J:/I and IJ.. • 

If one introduces the one particle dist
ribution function as a statistical average of 
the microscopic phase space density of the 
beam 

IV 
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r =' iII Y; 1 , ;V - number of particles in 
the beam, the stoss-integral is determined by 
simUltaneous correlator of fluctuations)" 
and induced by the beam fields /6/. Provided 
by necessary hierarhy of times /6/, the dyna
mic of fluctuations of ~ is described by 
Vlasov's equations. If also conditions of co
herent stability are valid, one can believe 
that for long scale times f is independent 
of phase variables. With such assumptions the 
kinetic of the beam is described by the sys
tem of equations: 

(4) 

cJ ~) JF = - oade, '!.i 
'dt;J or; /OI 

Here 8dt:'=£- .(£) is the fluctuation of 
the interaction lagrangian, d'F = F- f 

Proceedings of the 1984 Linear Accelerator Conference, Seeheim, Germany

253



a:l=tl.JCRIC+tl-l~ -fa".l'" • If the interaction 
energy of a couple is V{ft.t.} , cf£ is 

cS £ ( r; I i) = - S tI (.1) V ( ~ 2) d';: (~ t) ( 5) 

(~.t)=-{;;,;;) . The functions contribu
ting to eqs (3~5) are periodical functions of 
phases f ~ J • The periodical dependence on 
longitudinal coordinates is caused by perio
dicity of the lattice or by periodical place
ment of elements providing the interaction of 
particles. Thus there are expansions 

X (l,lt', t):= f X; (j~~) e/";;~ 

where ;;=ZlnX ,/1!i,nJ integernumbers,X 
is any function from ;:,~ , etc. 

The calculations with eqs (4) in the lo
west order of the perturbation theory on the 
interaction yield equation, which is analogo
us to that obtained by S.T.Belaev /3/: 

li == _ J) j-{ .I, -I ) 
~t -) _ /(JI 

j(j~t)= -;;_L...;';j )d(2) cf(t.J(i}-4J(z))X (6) 

"","'1. 
X I V U} 2) 12{(';1 O~(1)) f(Z) - (~oJ!.:)) f(i)} , 

ali ()I 2 

Vihen obtaining (6), one should assume that 
coherent tune shifts due to interaction are 
smaller that the frequency spread in the beam 
<I':A~I ). 

~q. (6) yields two important results -
- the conservation of average hamiltonian 

d/(. = !L (..L SJ r :/{.o f (r -1:)) = 0 (7) 
Jt - de N ) 'j 

and the H - theorem of Boltzmann 

where $ - is the beam entropy. By definition 
17/, eq (8) determines the rise time of the total 
phase space volume of the beam.1 r 

cit (9) 

So, relaxing of the beam to equilibrium due 
to IBS any way blowups l!.r , i.e. heats the 
beam. 

The distribution functions corresponding 
to equilibrium states of beams should have a 
form 1s t = ~t (':Ifr) which is possible when 
Jrr is an lnvariant of collisions. One can 
easily obtain from eqs (6,7) that for such 
equilibrium distributions 

f ~ exp (- £7/7) 

The r.h.s. of eq. (10) is not zero un
lessVI1,YI' is diagonal (V ..... ' t: J;,n' ), i.e. 
when interaction of two particles is modula
ted by average longitudinal motion. In such 
conditions eq (8) also yields 

tiff 0 
ttt /' 

the result of Ref. /4/. The heating effect is 
caused by energy transfer from average longi
tudinal motion to thermal degrees of freedom 
~e to sum resonances (~~ t ""l.Ii,.." 11 ,~" 
~ ,n - are integers) taking place for 
cOLliding particles. As we said for Coulomb 
scatterings the necessary modulation is a re
sult of the modulation of betatron functions 
(~(5') and 'X(cr-) ) specific for strong focu
sing machines. For interaction via surroun
dings this modulation can be caused by fini
te size of the interaction region. 

2. One more important feature of the ki
netic due to IBS is connected with the long 
range interaction of colliding particles. 
Such interaction yields collective phenomena 
of a beam, i.e. possibility for perturbation 
to propagate like waves in the phase space of 
the beam. If the problem of coherent stabili
ty is solved (which certainly is the problem 
itself) the life times of these waves Z~ 
are determined by frequency spread (and, pro
bably, by interaction with dissipative surro
undings). If tIC is comparable with relaxati
on time 't these coherent oscillations can 
exchange energy with particles. The energy 
transfer is a result of successive emission 
and absorption of waves by particles. Such 
reemission equalizes the temperatures of co
here~t oscillations and beam particles, i.e. 
particles fall into equilibrium with the co
herent nojse of the beam. The mean number of 
oscillations in the equilibrium /Vex depen
des on the beam temperature T ( /Vex = N.x fTl) 
For nondissipative surrounding, the total 
energy of thermal motion 

is conserved when relaxing to equilibrium. 
So if the initial level of the beam coherent 
noise was above the thermal level, the ther
malization of particles and coherent oscilla
tions will heat the beam /2/. The relaxation 
rate for such process 1/ tt is equal to the 
sum of the decrements of coherent modes ta
king part in the thermalization (divided by 
N ) and can be clo se to 1/ tJ( , if the fre
quency spread in the beam is small enough. 

Described mechanism is the leading when 
the main part of collisions turns to be adi
abatical (i:,,J.J ... ? i ). In the strong focusine; 
machines this condition is valid as better 
as hie;her betatron tunes (VX,2 "?>i.. ). 

The heating of beam by nonequilibrium 
coherent noise can enhance the heating rate 
of the beam fr 0 m coherent kicks. The last 
was discussed, for example, in Ref./S/ as 
one of the heating mechanisms for the beam 
in VLEPP. After thermalization in the beam 
of the initial coherent noise, such coherent 
kicks produce new portions of nonequilibrium 
noise with the energy of the order of that 
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of induced coherent oscillations. If the pe
riodAt D of such kicks exceeds the relaxa-
tion time .c. to';> 12:. ' absorption of 
this additional energy in the beam will en
hance the diffusion due to kicks. One should 
expect that additional diffusion due to in
teraction of particles will be proportional 
to coherent tune shifts and so, will increa
se as the beam current increases. 

Let us point out one more phenomenon, 
which is interesting from a general physics 
point of view. The presence in the equilibri
um of coherent oscillations yields the orde
ring of the particle motion in the beam, 
which change the properties of equilibrium 
itself. The level of this ordering increases 
wi th increase of ;Vex and for small enough 
frequency spread in the beam this can reach the 
crystal ordering /2/. 

The symmetry of such crystal beam depen
des on the focusing properties of the latti
ce and on the beam parameters. In fact in 
Ref. /2/ was shown, that in nonrelativistic 
coasting proton beam, moving in a synchrot
ron with the particle energy below transition 

the collective interaction of particles 
yields the exact lon~itudinal ordering of the 
betatron oscillation planes if N ex = N . 
The average distance between neighbour planes 
in this state tends to n IN (n - orbit peri
meter). In conditions considered in Ref. /2/ 
the occurrence of the crystal structure in 
the beam was connected with cooline to very 
small longitudinal temperatures. More General 
is a requirement of occurrence in the beam of 
a very small frequency spread. The last besi
des temperature is determined by nonlineari
ty of the focusing and space charge fields. 
For relativistic beam the contribution to 
tunes from space charge is depressed. 'l'hus 
in the machines with small nonlinearities 
provided by wide enouGh spectrum of r.oherent 
oscillations the beam can get more complex 
(compearing with described) crystal structu
res. 

The depression of the relative mobility 
of particles due to action of collective 
fields can depress the thermalization in the 
beam due to IBS. Such an effect ~BS observed 
experimentally on Schottki noise measure
ments at NAP-M /9/ and on measurement of the 
longitudinal temperature in the magnetized 
electron beam /10/. 

If the interaction of particles yields 
coherent instabilities but these are damped 
by Landau damping, the process of noise 
thermalization should be more complicated. 
In Ref. /9/ (and actually in /2/) it was 
shown that this time the equilibrium noise 
level (if it exists) tends to blow-up while 
reaching threshold (T -- Tih ( N) ). This 
means, that the level of the coherent noise 
in such a beam can exceed the thermal noise, 
and so can yield additional heating of the 
beam. 
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