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Introduction 

In rf accelerating cavities, the fundamental exci
tation serves to accelerate a beam which is bunched in 
synchron ism with some harmon i c of th is exc itat ion. As 
the accelerated current increases, the beam "loads" the 
fundamental mode and must draw its energy from a source 
appropriately compensated for this "beam loading." Al
though this problem is especially important for high 
current superconducting cavities, it is well under
stood l and presents no insuperable problems. 

A beam bunch is also capable of exciting other 
longitudinal and transverse modes in the cavity, and 
these modes can affect the motion of that bunch, and/or 
the ones which follow. In an accelerating cavity with 
sufficiently high current the fields can grow with suc
cess i ve bunches, thereby 1 eadi ng to unacceptably large 
bunch oscillations (regenerative beam breakup). In a 
linear accelerator consisting of many identical cavi
ties, the growth of field in one cavity can lead to de
flections which provide enhanced excitation of subse
quent cavities, thereby also leading to unacceptably 
large bunch oscillations (cumulative beam breakup). 
And in circular accelerators or storage rings the cumu
lative effect can be enhanced by the periodic return of 
each bunch to the exciting cavity, leading to both 
longitudinal and transverse beam instabilities. 

The present paper is not long enough to review all 
these and other important beam cavity effects. In
stead, we shall (1) summarize the results for trans
verse regenerative beam breakup, (2) review recent work 
on transverse cumul ati ve beam breakup of bunched beams 
in linear accelerators, and (3) show how this recent 
work can be adapted to the study of transverse insta
bilities in circular accelerators or storage rings. 

Regenerative Beam Breakup 

If a transverse mode (a mode excited by off axis 
motion in the x direction) is excited in a cavity, a 
beam bunch wh i ch enters on ax is wi 11 exper i ence a de
flection, and thereby will be displaced into a region 
where it may further excite this mode, primarily 
through the interaction 
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where x(z) is the beam bunch trajectory within the cav
ity. One can express x(z) in terms of the cavity de
flecting fields Ex, By, and through Maxwell's equations, 
in terms of 3E z/3x. In this way the increase in field 
due to the passage of the bunch, which is proportional 
to the beam current and to the field level itself may 
be obtained. The decay of the field between bunches is 
clearly proportional to the field level and to l/Q. It 
is therefore easy to see (with due attention to rela
tive phases) that there is a value of average beam cur
rent above which the field increase is greater than its 
decrease, thus leading to a runaway field level and 
transverse displacement. This value of current is 

*Permanent address: University of Maryland, College 
Park, MD 20742; work supported in part by DOE Contract 
#AS05-80ERI0666. 

(2a) 

where w/2n is the frequency of the transverse mode and p 
is the momentum of the (reI at i vis tic) beam bunch. The 
parameter 
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is the transverse shunt impedance of the cavity whose 
length is L. Note that, apart from a phase factor, Z~ 
is proporti.onal to L, so that Is is inversely propor
tional to L~. 

The starting current for regenerative beam breakup 
was first derived by P. B. Wilson' for traveling wave 
acceleration. The analogous result given in eq. (2a) 
applies to acceleration by a standing wave cavity.' 

Cumulative Beam Breakup 

Difference Equations 

I f one assumes a I i near trajectory for each beam 
bunch as it passes through each cavity, it is possible 
to derive a set of difference equatons for the trans
verse displacement ~(N,M) and angle 8(N,M) of the Mth 
bunch as it enters cavity N. Assuming identical cavi
ties which are electrically uncoupled, and a coasting 
beam, the equations can be written as 

~(N+l,M) MII~(N,M) + MI2 [8(N,M) + F(N,M)] (3a) 

8(N+I,M) M21~(N,M) + M22 L8(N,M) + F(N,M)] (3b) 

where 

M12) = (COS 11 + 0. sin 11 

M22 -y Sln 11 J (4) 

B sin 11 

cos 11 - 0. sin 

is the usual Courant-Snyder parameterization of the fo
cussing system between cavities and where 

_ M-l 
F(N,M) R E sM_~ ~(N,~) 
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is the transverse impulse given to bunch M due to the 
passage of all earlier bunches through cavity N. Here 

R (6) 

is a parameter proport i ona I to the charge ina bunch 
(assumed to have negligible longitudinal extent), and 
to the ratio of the transverse shunt impedance of the 
mode to its quality factor. The cavity oscillation is 
contained in the factor 
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where WT is the phase advance of the transverse mode 
between bunches. 

Exact Solution 

Gluckstern, Cooper, and Channell J have obtained 
an explicit solution of eqs. (3) in terms of products 
of Gegenbauer polynomials, and as an equivalent integral 
representation. Specifically, they showed that 

+ sin )1 n(O,M-m) H(X,y)] (8) 

where 

x - cos WT, Y COS)1, n(n,m) B0(n,m) + at;(n,m) ,(9) 

and 
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Here 

-~~~sinh No 2n um+ 1 

BR. . 
6 - ~ Sln )1 Sln WT 

J (u) 26u cosh 0 - Y + J(u) 
- 2ux + u2 

Steady State Solution 

For constant t;(0, M-m) - t;o, n(O, M-m) -
perform the sum over m to M = 00 in eq. (8), 
the contour integrals in eqs. (10) and (12) 
the steady state result 
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where 
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and where J can be written as 
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The result in eq. (15) is exact and indicates that 
the solution will either oscillate or grow exponentially 
as N increases, depending on whether Icos )J + JI is less 

than or greater than 1. In making our estimates, we 
shall assume that )1 = 0 and IJI «1. The exponent cor
responding to exponential growth then can be approxi
mated as 

eo = No ~ N(2J)1/2 (18) 

The effect of resonance between the mode frequency and 
the accelerating frequency is contained in eq. (17). 
Specifically, for large Q, resonant peaks occur at 

WT = 2nn(1 + 1Q) , n=l, 2, ... ( 19) 

with exponential growth given by 

(20) 

where M12 = L is the spacing between cavities in the ab
sence of external focussing. A similar analysis can be 
carried through for a modulated input displacement. J 

Transient Behavior 

It is also possible to derive the transient oe
havior for large M and N from the integral representa
tions in eqs. (10) and (12). For a single displaced 
pulse, and without external focussing, one can use a 
saddle-point method to show that 

'" -MWT 3/3 
s( N,M) ~ L e 2Q + 4 El 3 --c-- cos (MWT - tEl - Tz) 
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where 

(22) 

For fixed N, the maximum oscillation amplitude occurs 
when 

(23) 

and reaches a maximum value 

(24) 

which gives close agreement with results of the numeri
cal simulation described in ref. 3. Tile saddle-point 
calculation also gives good agreement with the approach 
to equil ibrium in the steady state case, where the nu
merical simulation shows the rapid development of sym
metric oscillations about the steady state value of t;. 
Space does not permit a discussion of the adiabatic ap
proximation which can be carried through for acceler
ated or decelerated beams. 3 

Application to Regenerative Beam Breakup 

It is possible to construct a simple model for re
generative beam breakup from the equations for cumula
tive beam breakup. Equation (3) can be put in the form 

A M-l 
t;(N+l,M) - 2t;(N,M) + t;(N-l,M) LR r sM_i s(N,i) (25) 

i-o 

where we assume no external focussing. But eq. (25) 
corresponds to the absence of electrical coupl ing oe
tween adjacent cavities. In the case of regenerative 
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coupling we take all No cells (instead of cavities) to 
be tightly coupled in our simple mode and replace ~(N,~) 
on the right side by its average over N from 1 to No.* 
In this way the right side of eq. (25) becomes independ
ent of N and permits as a solution (for large N) 

~(N,M) " a(M) N2 

(26) 

leading to the self consistent equation describing the 
onset of instability 

6a(M) L (27) 

Neglecting phase factors in a(~), sM-~' one obtains for 
1 arge 0 

(28) 

corresponding to the starting current 

(29) 

Note that Z./L can be replaced by Z~~, where 

WE f E2 dV 
(30) 

corresponds to the definition of Z~ for a cavity of 
length:t:. Thus the result in eq. (29) agrees quite 
closely with the more accurate result in eq. (2a). 

Our "derivation" clearly ignores all phase fac
tors, including the requirement 2 of the phase slip 
between the osci 11 ations of the beam bunches and the 
transverse cavity mode.t But we obtain a surprisingly 
accurate result in our simple model. 

Transverse Instability in Circular Accelerators 

The displacement of a beam bunch on its Nth revo
lution in a circular accelerator, interacting with a 
cavity is governed by the analogue to eq. (25) 

~(N+l) - 2 cos jJ ~(N) + ~(N-l) 

It can be seen that 

N 
M12R L: S~~(N-~) (31) 

£=1 

~(N) Az- N (32) 

is a solution for large N provided 

*We are clearly neglecting phase differences in the 
excitation of adjacent cells. 

tA more careful treatment, including phase factors, 
changes the factor 12 in eq. (29) to TI 3/2 for a 
phase s 1 i P of TI between the beam and the cavi ty mode 
over the 1 ength of the cav i ty, in comp 1 ete agreement 
with eq. (2a). 

z + .l - 2 cos jJ z 

where 

az + ~ - 2 cos WT az 

a = e-wT / 20 

(33) 

(34) 

Equation (33) is a quartic equation for z; the solution 
for UN) in eq. (32) will be stable provided Izl ~ 1 
for all four roots. 

We can obtain an approximate solution for 

and find for the roots near e±ijJ 

BR sin WT sin jJ . h WT 
1 + 4~2 Sln 2Q (35) 

and for the roots near a-le±iwT 

1 + sinh W"QT[l 2 / 
LlJ + e-WT 20 

si n tJ BR sin WT 

(36) 

where 

We therefore will have stability provided 

O 
BR.. 2 

~ -2 s 1 n WT s 1 n jJ ~ 
4~ 1 + e-wT/ 2Q (38) 

This method has been extended to the case of sev
eral circulating bunches, several identical accelerat
ing cavities, and several transverse modes in each cav
ity, including the harmonics of the synchrotron osci 1-
lations.' Results are obtained for frequency shifts and 
growth rates which are in agreement with those given by 
Suzuki and Yokoya S for the hollow bunch model using the 
Vl asov equation. In all 1 ikel ihood, our method could be 
adapted to obtain the corresponding results for longitu
dinal instabilities given by Suzuki and Yokoya for the 
waterbag model. 
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