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Previous analytical studies related transverse rms 
emittance growth In non-uniform beams to changes in the 
beam density profile but did not analyze the time evolution 
of the process. 

Our new approach analyzes the internal motion of the 
beam and then obtains the rms emittance explicitly as a 
function of time. It is shown to reach its peak value 
explosively in about one Quarter of a plasma period. 

We give a uniformity criterion that determines 
whether or not the emittance oscillates periodically. We 
exhibit continuous initial density profiles that lead to 
discontinuous shock-like behavior and segmented (beam­
merging) profi les for which the rms emittance jumps to 
its maximum value in one-fourth of a plasma period and 
remains there with essentially no further change. 

AsymptotiC behavior is briefly discussed. 

Introductjon 

In 1971 Lapostolle [1) and Sacherer (2) derived rms 
envelope equations which were used by Lapostolle and 
independently by Lee [3) and Wangler [4) to obtain a 
differential relationship between cnanges in emittance 
and changes in self-field energy. Wangler et al. presented 
numerical simulations showing emittance growth in one 
Quarter of a plasma period. "However. this surprisingly 
rapid growth was unexplained by the analysis. which ala 
not treat time dependence. 

In the present paper. we first solve for the beam 
internal motion as a function of time and then calculate 
the moments. The rms emittance is shown to reach Its 
peak value in about one Quarter of a plasma period. in 
agreement with the simulations of Wangler et al. 

We separate the mean-square emittance into a ther­
mal part and a fluid-flow part.. For a strongly space­
charge dominated warm beam the fluid motion during the 
initial emittance growth is the same as for the corres­
ponding cold beam. except for a slight change in timing. 

Tlius we do almost all of the analysis on cold beams. 
gaining mathematical simplicity. Af{er calculating the 
expliCIt time dependence of the cold-beam emittance. we 
show how to incorporate the thermal part. We also diS­
cuss asymptotiC thermalization of the emittance. 

To simplify the formulas we will take the model 
(easily generalized [5)) of non-relativistic. singly charged 
particles propagating in vacuum. The beam energy is 
assumed much larger than the space-charge potential. 
allowing the usual approximations. that the beam 
particles all have the same longitudinal velocity v. and 
that the transverse velocities are much smaller than v. 

We will treat both round beams and sheet beams. 
Round beams are by definition azimuthally symmetriC. and 
sheet beams are by assumption symmetriC in the direction 
of transverse mot lOn, x. This symmetry means that only 
the upper half (x ~ 0) of a sheet beam needs to be 
considered; all X-integrals will start from zero. 

We begin with the simpler case of sheet beams. 

I. SHEET BEAMS 

Space Charge Field 

If the beam density is n(x.z). the number of particles 
per square cm within half-width x is 

Nx(x,z) I n(x 1.z) dx 1· (1) 

POiSSO~'S equation (for singly charged ions) gives o~1 ax = 
(4Tfe)- (O/ox) Es(x.z) where Es is the x-component of the 

space charge field. and where the term oEs loz has been 
droPl)ed. Tnis is justified if the beam is re~sonably thin; 
1.e., If (kh)2 « 1 where k IS the channel focusing wave 
number and h is the beam half-width. Integrating, 

(2) 

Particle Motion 

As stated in the introduction. we will begin by 
analyzing cold beams; thermal motion will be includea 
later. We consider individual particles in a uniform 
channel with linear external focusing: 

x" = - k2 X + P Nx(x,Z)/N (3) 

where x" "d2x/dz2, N is the half-beam line density (per 
cm2). and 

P = 4TfNe2/mv2 (4) 

is the normalized line perveance. representing total space 
charge. 

For a cold beam the particle motion is initially 
laminar. We will show in the next section that it remains 
laminar for at least the distance A/4, where A = 2Tf/k. 

Thus we begin with the ansatz of laminar motion over 
a range 0 ~ z ~ Zc where the critical distance zc ) A/4 is 
to be calculated later. Since no trajectories cross. Nx is 
preserved for each particle at its position x(z). 

If we write ~ for the initial position of the particle 
that is currently at x(z). then Nx(x.z) = Nx(~.O) for all x in 
the laminar range of z, so that the space-charge term in 
EQ. (3) is constant. Using the abbreviation Nx(~.O) = Nx(~). 
we define the equilibrium position 

xe (~) • (P/k2) NxW/N (5) 

and get the linear equation 

x,. + k2 (x - xeW) • O. (6) 

For the initial condition x'(~) • 0, the solution is 

x (tz) xe (~) + (~ - xe(~» cos kz. (7) 

Crossjng of Trajectories 

Laminar motion ceases if two beam elements with 
initial separation d~ are later separated by dx • 0; i.e., it 
ceases at the distance Zc where the derivative dx(~,zc)/d~ 
vanishes. From EQ. (7) 

dx/d~ • dXe/d~ + (1 - dXe/d~) cos kz. (8) 

From EQs. (1) and (5), 

dXe/d~ • n(~)/nu (9) 

nu • N k2/P . ( 10) 
where 

W,e define the plasma frequency by Wn02 • 4rre2nu/m. The 
dIstance the beam travels in one plasma period is ~o = 
2Tfv/wp.o. Using EQs. (4) and (10) we see that Apo " :,m/k 
which IS the same as A. defined earlier. 

Combining EQs. (8) and (9). 

dx/d~ " n(~)/nu + (I - n(~)/nu) cos kz. ( II) 
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Laminar motion ceases at the critical distance Zc where 
the left side vanishes: 

-I 
cos kZc ( 12) 

nu/n(~) - 1 

Laminarity Criterion: If n(~) > nu12 for all ~ < h, 

there is no solution; Zc does not exist, and the motion is 
laminar for all Z in the cold beam limit. 

I f n(~) ~ n 12 over some range of t then the part of 
the beam with t\f;e lowest density will cross trajectories 
first and define ze- (This point of minimum n will be 
called k) Beyond Z = ze' the linear equation (6) is invalid. 

If Zc exists, then it always lies between ,,/4 and ,,/2. 

Beam Density Time Deoendence 

Laminar motion implies n(x,z)dx = n(~)d~, so, using Eq. 
(11 ), 

n(x,z) ,. 
nu 

( 13) 
1 + (nu/n(~) - 1) cos kz 

where the x dependence is found by simultaneous use of Eq. 
(7). Note that n(x) becomes uniform at z • ,,/4 and then a 
density reversal occurs: particles originating in under­
dense regions find themselves in overdense regions and 
vice versa. If the laminarity criterion is Violated, then 
n ~ 00 as Z ... Zc for particles originating at k After Zc a 
shock-like phenomenon occurs which IS illustrated in a 
later section. 

If there are gaps in the density prOfile, then Eq. (11) 
needs some modifIcation [5]. For such cases, Zc • ,,/4. 

For any cold-beam initial profile, continuous or not, 
matched or not, the density at ,,/4 is uniform and equal to 
the density of a matched [learn. This surprising and very 
important result comes from the linearity of Eq. (6) and is 
not quite true for round beams. 

Rms Beam Size 

Averages over density profiles are defined by 

< g >(z) • Wi r dx n(x,z) g(x). ( 14) 

Changing the integration variable from x to the initial 
value ~, 

< g >(z) • N-l r d~ n(~) g(x(tz». ( 15) 

For the mean-square beam width, we use the notation 
X2(z) = <x 2) Defining C = cos kz and using EQ. (7) we find 

[ P ]2 P X2(z)· --2( I-C) + XoC - UnoXo -- C(1-C). (16) 
./3 k ./3 k2 

Xo is the initial value of X and Uno is the initial value of 
trie beam shape factor (which is zero for a uniform beam): 

where 
Un(z) - 2 - 2./3 WI P X 

W(Z) • P < x Nx ) I N 

( 17a) 

( 17b) 

is the virial moment [3]. For discussion, see Ref. [5] which 
gives a table of Un values; Un is the normalized free self­
field energy for a sheet beam. 

EQ. (161 is greatly simplified for a matched beam. 

Matching 

In Eq. (16), whatever value of X.o is chosen there will 
be fluctuations in X (unless the initIal profile is uniform). 
But certain choices give a matched beam in the sense that 

the fluctuations are Quite small. A particularly simple 
choice gives what we call Al4 matching: we choose XO, the 
value of X at z ,. 0, to be equal to the value given by EQ. ( 16) 
at z = Al4: 

Xo2 ,. X2(,,/4) • (P/k2)2/3 (18) 

and EQ. (16) simplifies to 

X2(z) ,. Xo2 [ I - Uno cos kz (1 - cos kz) l ( 19) 

Eq. (18) gives the same matching as the equivalent beam 
approach II ,2,4]. Reference [5] also describes another type 
of matChing which gives less than half the ripple. 

Rms Emittance 

We use Sacherer's definition of rms emittance [21 

e2 ,. < x2 ) < X,2) - < x x' )2 (20) 

We have already found < x 2 > [Eq. (16)]. The other moments 
may be found in the same way. When they are inserted in 
Eq.120) many terms cancel, leading to a SImple expression 
valid whether the beam is matched or not [5]. If we 
specify that the beam is ,,/4 matched then we can write 

P Uno 
e2(z) ,. T3 Xo3 Uno (1 - 4""" ) sin2 kz. (21) 

This may be compared with the result from moments [5), 

.2... e2 - ~ X3(z) i.. U (22) 
dz ./3 dZ n· 

The factor (1 - Uno/4) for typical initial beam profiles is 
usually within about 1 ~ of unity. This factor arises from 
the small variations of X given by Eq. (19). 

If the laminarity crIterion is satisfied, then e(z) -
Isin kzJ indefinitely, aS

2
in Fig. la, where the initial 

profile IS nln :a L2 - 0.6~ for ~ ~ 1, and 0 for ~ > 1.. 
There ar~ two tYp'es of profiles which develop non­

laminarity: (I) profIles with gaps and (2) continuous 
profiles. We discuss these cases In the next two sections. 

profiles with Gaps; Merging Beams 

If there are gaps in the initial beam density profile, 
the emittance jumps to a substantial value at z - ,,/4 and 
stays essentially constant thereafter. The physical basis 
for 1his phenomenon is discussed in Ref. [5J. 

Fig. Ib, obtained by numerical Simulation [7], illus­
trates the effect. It shows e vs. z/" for 6 beams injected 
into one channel; the typical parameters are discussed in 
Ref. [5]. The emittance up to z/" • 114 agrees with our 
next analytic result. 

To analyze the emittance for a profile with gaps, we 
choose the simplest model: M segments each having the 

-. 
E 
u 
I 

"0 
('0 

'-
E !r /\ 
o'--__ "--__ "--_---''--__ ......... __ ..L.-o.._--..J 

o 0.5 z/" 1.0 0.5 I" 1.0 1.5 
Z IBl e6S~ 19M 

1.5 0 

Fig. 1. OSCillatory and non-oscillatory emittances. 
(a) Initial profile satisfies laminarity criterion. 
(b) Merging beams with gaps In profile. See text. 
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same uniform density and the same width, and separated 
by distances equal to this width. For X/4 matching we 
'md [5J 

p2 I [ M2 - I ]1/2 , 
e(z) • - - sm kz 

3 k3 M 4 HZ - 3 

for z ~ X/4. The factor before sin kz equals O.S with cor­
rection < I % for M > 3. In most practical cases, e - 11M. 
Putting in numbers (see Ref. [5]), one finds that segmented 
beam emittances can jump to undesirably large values 
unless M, the number of beam lets, is large. This jump 
could occur in beam merging as proposed" recently for 
some applications involving sheet beams or round beams. 
Our results indicate what could happen in either case: 
prompt, permanent and substantial emittance growth. 

Continuous profiles: Wave Breaking 

In this section we discuss cases where n(~) is non­
vanishing .out to the beam edge but n(~) < "u12 for some ~; 
EQ. (12) gIVes the point z - Zc where the trajectories will 
cross. As we have shown, the phase space dynamics of 
cold beams are easily and exactly described up to this 
point. Before Zc is reached, the dfstribution on the (x,x') 
phase plane is a well-behaved curve with slope 

dx' dx' Id~ - (I - n(~)/nu) k sin kz 
dx = dx/d~ ,. n(~)/nu + (I - n(~)/nu) cos (kz) ' (23) 

Comparing with EQ. (12) shows that this slope is finite for 
Z < Zc so 1hat x'(x) is single valued. As Z ~ z the curve 
steepens like the shape of a wave about to bre~. Although 
this occurs in phase space, not real space, the subsequent 
behavior is sometimes referred to as wave-breaking [6J. 
The effect in real space (for a cold beam) Is thaf the 
charge density becomes singular as z ~ Zc [Eg. (13)J. After 
this singularity EQ. (6) musf be replaced tiy (3). 

Altflough our main purpose here is to present analytiC 
results, we illustrate the effect with a typical numerical 
Simulation [7]. The Initial density profile was chosen to 
be nlnu = I - 0.7coS(TT~/h) for ~ ~ h, with n ,. 0 for ~ > h. 
Fig. 2 shows the steepening of dx'/dx and the wave­
breaking in phase space. It also shows the corresponding 
denSity profiles which exhibit phenomena resembling 
shock fronts propagating from the singularity. 

The rms emittance up to z • ze. agrees with EQ. (21). 
Later its behavior is intermediate between Figs. I a and I b, 
showing damped oscillations. Very much later, the beam 

ma\.j reach eQui librium; eQui librium profiles are nearly 
uniform for space charge dominated beams. Ref, (5] shows 
that a uniform beam has minimum self-field energy for a 
given X. The final steady state for a matched beam would 
nave about the same rms emittance as at the initial peak ; 
this is shown at the end of the next section. 

Thermal and Asymptotjc Emittance 

We can divide any mean-square emittance into a 
thermal part and a fluicf-flow part [5]. We use the symbol 
("')av to denote a local average over velocities. For anlj 
value of x we define the fluid velocity u(x,z) = (x')av ana 
the specific stress tensor T(x,z) • «x'-u)2)av, which 
gives the temperature if the distribution is thermal. Then 

e2(z) = < x2 >< T > + [< x2 >< u2 > - < x u >2]. (24) 

For a cold beam during the period of laminar particle 
motion, given by EQ. (12), all the emittance is due to the 
flow term in brackets. But in general we have 

e2total ,. e2thermal + e2flUid ' (24' ) 

For warm beams we show in Ref. [5] that EQ. (21) still 
applies, at least up to Z • X/4, to the fluid part of the 
emittance if a slight correction is made to k. For matched 
beams (X nearly constant) the thermal term in EQ. (24') is 
essentially constant; for our initial conditions EthermCz) 
• EO and 

[ 
p ]1/2 

Etot(Z)· E02 + -13 X03 Uno sin2 k lz (25) 

where kJ is the slightly corrected wave number discussed 
in Ref. [5]. 

EQ. (25) resembles a sheet-beam version of an 
equation due to Struckmeier, Klabunde and Reiser -- see 
EQ. (15) in Ref. (4). What is new in Eg. (25) is that it shows 
that the upper I1mit mentioned in [4J is actually reached 
and shows that it is reached at z '" Xo/4. 

If wave-breaking occurs, then energy is transferred 
from the fluid term to the <T> term, in a non-thermal way 
at first. Asymptotically, complete thermalization coula 
occur. For any time scale, we can use the invariant (twice 
the total energy) (8J: 

<T> + <u2> + \(2<x2> - 2W(z) = Const (26) 

where W(z), the virial moment, is related to UnCz); see Eq. 
(17). I f the beam becomes more uniform, W increases and 

;:" /\ / :1 N II /I ) + 1,1 + 1

: 0 / V II '1/ l/ ' I 'i " 'I ' ' 1 11 
': I ' i ' 'I li ;1 ! ' ;1 : : ;' _____ -'" ,I " ' , 'L-, _ __ _ 

Ii :1 II Ii ! 

,_'\_\ _1 ---111 \J .!'--__ ---1;'--1 _---"_ 1_ -----':1 ~L I Y- i ~v-
Fig .. 2. Example of wave breaking in phase space and shock 
formation in configuration space; z/>' • 0.0, 0.125, 0.25, 
0.375, 0.5,0.625, and 0.75. Upper row shows phase plots; 
lower row shows corresponding charge densities. These 
results during the laminar regime agree with EQs. (23) and 

(13). According to Eq. (12) wave-breaking starts at z = 
0.32>'. This figure 1llustrates cold beam behavlor. spa8e­
charge dommated warm beams show Similar patterns in 
the phase plane; ttlelr denSlty pror11es for z ~ Zc show 
similar shock-like structures out are smoother. 
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therefore so does <u2> or <T>. Asymptotically, Uoo ~ 0, 
and also Unoo Z ° to high accuracy for a space-charge 
dominated beam. EQs. (24) and (26) yield 

II. ROUND BEAMS 

Exact results are not obtainable for round beams, but 
perturbatIon analySIS gIves accurate results whIch are 
similar to those for sheet beams. We find: 

(a) The crItIcal density for laminar partIcle motIon 
1S again half the equivalent uniform density but with a 
fIrst order correctIon, tYPIcally around 10%. 

(b) Different parts of a non-uniform round beam 
OSCillate at slightly different freQuencIes. The correctIon 
is of second order (usually less than one percent), with 
negligible effect except pertlaps for long tyne scales. The 
frequency for a cold beam is essentially 21< . 

(c) The partIcle excursIons are nonlInear, so the 
beam density is not precisely uniform at z " Ao/4, where 
Ao = 2TT/Wo. However, the nonuniformity is so small that 
essentially all the free self-field energy is converted into 
kinetIc energy and emIttance growth. 

Again, we start with colC! beams and discuss thermal 
effects later. 

partIcle MotIon 

If the beam density Is n(r,z), the number of partIcles 
per cm or length within radius r is 

r 
Nr(r,z) '" aI 2TTr n(r1,z) dr1 . (27) 

The self field Is Es '" 2eNr /r and the total perveance Is 

K = 2Ne2/mv2 (28) 
where N Is the total number per em. The external fOCUSIng 
force is assumed to be linear: 

r" • - k2 r + K Nr(r,z)/(N r) (29) 

and for a cold beam the particle motion is laminar for Z 
less than a crItical dIstance Zc. We wrIte p for the inItIal 
position of the particle that is currently at r(z); thus 
Nr(r,z) ,. Nr(p,O). USIng the abbrevIatIon f'lr(P,O) '" Nr(p), 
we define tne equilibrium position 

r e (p) [~ Nr(P)] 112 (30) 
k2 N so that 

r"+ k2 (r-re
2/r) '" ° (31) 

in the laminar range. This equation can be solved by the 
LIndstedt-Poincare methOd discussed in [91. The solutIon, 
for the initial condition r'(p) • 0, is 

r(p,z) = re[ I 8
2 

1 ] + 8 cos wz + - ( 1 - - cos 2wz) + .,' 
4 3 

(32) 

where 
71 - 71 2/6 S(p) (33) 

71 (p) p/re(p) - I (34) 

w(p)1 Wo 1 + 82/12 (35) 

w0
2 2k2 (36) 

We can show that 71 van i shes for a II p if the beam is 
matched and uniform; therefore 71 is a uniformity 
parameter. We only need it to first order in the follOWing 
results, but second' order terms must be kept in EQs. (32) 
and (33) in order to derive those results [5]. 

Tra jectory Crossjng for Continuous Profile 

As in the case of sheet beams, laminar particle 
motion ceases at the critical distance z where the 
derivative dr(p,Zc)/dp vanishes. From EQs. ({n and (30), 

(re dre)! (p dp) = n(p)! nu; (37) 

f or round beams 
nu • N k2 1 TT K . (38) 

Using EQ. (32), we find to first order in 71 

r dr 
pdp 

~+ [1-~][C+~71(I-C)2] (39) 
nu nu 3 

where C ,. cosWr\z. The condItion for trajectory crossing 
is found by settlng the left side equal to zero and solving 
for COS<aloze:. Defining a as the initial beam edge (where 
the density ralls to zeroTwe get the following: 

LamjOarjt~ Criterjon (to first order in 71): 

nu 4 
-(1--71) 
2 3 

If n(p) > for all p < a, 

then the motIon Is laminar for all z. The criterion is the 
same as for sheet beams except for the correction factor. 

Beam Densitij Jjme Dependence 

In analogy with sheet beams, laminarity can be ex­
pressed as 

Eq. (39) gives 
21TrnCr,z)dr'" 2TTpnCp)dp. (40) 

n(p) 
n(r,z) (41) 

~ + [1 - ~][C + ~ 71 (1 -C)2] 
nu nu 3 

where the r dependence is obtained by simultaneous use of 
EQ. (32). If the laminarity criterion is Violated, shock­
like behavior (similar to that in Fig. 2) will begin at Z = ze 
if the initial profile is continuous. 

Rms Beam Sjze and Matching 

Equation (32) shows a complicated time behavior. We 
will not consider the exact time dependence of R2 2 <r2> 
but will only calculate it at z = Ao/4, where 

AO .. 2TT/wo' 
At this point the density profile is nearly uniform so that 
essentIally all of the free self-fIeld energy Is converted 
into fluid energy. 

Averages over density profiles are given by 

< g >(z) ,. N-I I dp 2TTP n(p) g(r(p,z» (42) 

where we used EQ. (40) to Change the Integration variable 
from the current position r to the initial value p. The 
InitIal mean-square radius at Z = 0 is 

R02 <p2> = W I!dP2TTp3 n(p). (43) 

Proceedings of the 1986 International Linac Conference, Stanford, California, USA

MO3-12 68



At Z ,. AO/4, EQ. (32) gives, to first order in 'fl, 

< r2 )(Ao/4) = < re2 ) . (44) 

From EQs. (37) and (42), < r 2) • Kl2k2. It follows that 
the condition for Aol 4 matc~ing is 

R02 '" K 1 2 k2. (45) 

Peak Rms Emittance 

In terms of the radius, Sacherer's x emittance, EQ. 
(20), is 

1 [ ]1/2 e " 2 < r2 ) < r'2) - < r r' )2 .' (46) 

The above moments at z = Ao/4 are readily evaluated from 
EQ. (32) to first order in 1"\. But it is easier to calculate 
the peak emittance from the free self-field energy; Ref. 
(5] shows that the two methods give nearly identical 
results. 

Our exact solution for sheet beams, EQ. (21), turned 
out to be closely relateCl to a Cl1fferentlal eQUation for 
emittance vs. free energy, EQ. (22). The analogous differ­
ential equation for rounabeams was given In Refs. (I], [31, 
and [4]. In Ref. [41, it was integrated by treating R as 
constant. This ylelCled a maximum emittance growtt'l 

t.e2(max) '" K Ro 2 Uno 116 (47) 
where Uno is the initial value of the normalized free 
self-flela energy, given by 

Un(z) • 4J dr Nr 2(z)1 ~r - (I + 4 In b/R..j2). (48) 

(One chooses b to include all the beam.) The analysis used 
in [1,3,4] did not show how rapidly the maximum emittance 
would be reached. But if, as in P"art I, the density profile 
at z" Ao/4 is essentially uniform, then we find 

e2()'0/4) .. KRo2Uno/16. (49) 

We have confirmed such uniformity for typical profiles. 
An example is the parabolic profile: 

n(p) = 2N [I _ p2]. (SO) 
rra2 a2 

In Ref. [5] we found anal'{tlcallY the density prof1le at z " 
Ao/4 as an explicit fune ion of r. The result is plotted in 
Flg. 3 where It Is compared with the initial profile. The 
denSity is clearly flat enough at z " "0/4 to make Un(Z) 
negllgfble. Thus. EQ. (49) gives an accurate result. 

o ~ ______________ ~~ ______ _ 

If) 

o 

o ~------~----__ ~~ ______ -L-L ____ ~ 

o 0.5 
ria 1.0 

XBL 865-1932 

Fig. 3. Analytic density profiles at z = 0 and z = "0/4. 

To confirm this pOint, we calculated the emittance at 
Z = A 14 using the free energy Un ' EQ. (48), and compared 
it wi~h the result obtained from <>the gynamics using EQs. 
(32) and (46). We found e(" 14) = 0.0374 Ro..jK using the 
first method and 0.0375 ffo..jK using the second. The 
uniformity at Ap,/4 (Fig. 3) is responsible for the high 
accuracy of the ree energy calculation. 

Thermal and Asymptotic Emittance 

For matched, strongly space-charge dominated beams 
the total emittance at z os Ao/4 is 

[ 
2 K 2 ] 1/2 

Epeak EO + 16 Ro Uno . (51) 

See the discussion in the last section of Part I. Simu­
lation studies by c.M. Celata [10] have confirmed that EQ. 
(51) gives accurate results for a space-charge dominated 
beam. Our prediction that the emittance peaks at z os A 14 
agrees with the simulations reported by Wangler et al. ~4); 
in fact, the present stUdy was inspired by a desire to 
understand the physics behind those surprisinqresults. 

The invariant corresponding to EQ. (26) is [8] 

< T r) + <ur
2) + k2<r2) + K Un(Z)1 4 - K In R "Const. 

where ur and Tr. are radial versions of the Quantities in 
EQ. (24), and Un(z) is defined by EQ. (48). For the asymp­
totic case discussed under EQ. (26) we have ur "0, T r Z 0, 
and 

R_[ k2 K Roo]1I2 
E_ • R e2

peak + "4 R02(R02 - R_2) + "4 R02 In R 
o 0 

which agrees with Ref. [4] if Roo = Ro. We can eliminate 
Roo for cases where the beam size is mismatched [8]. The 
result is the same as in [4] but with additional terms. 
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