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INTERNAL DYNAMICS AND EMITTANCE GROWTH IN NON-UNIFORM BEAMS
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Previous analytical studies related transverse rms
emittance %rowth In non-uniform beams to changes in the
beam density profiie but did not analyze the time evolution
of the process.

Our new approach analyzes the internal motion of the
beam and then obtains the rms emittance explicitly as a
function of time. It is shown to reach its peak value
explosively in about one guarter of a plasma period.

we give 3 uniformity criterion that determines
whether or not the emittance oscillates periodically. we
exhibit continuous initial density profiies that lead to
discontinuous shock-like behavior and segmented (beam-
merging) profiles for which the rms emiftance jumps to
its maximum value in one-fourth of a plasma period and
remains there with essentiaily no further change.

Asymptotic behavior is briefly discussed.

Introdyction

In 1971 Lapostoile [1] and Sacherer {2] derived rms
envelope equations which were used by Lapostolle and
independently by Lee [3] and Wangler 4] to obtain a
differential relationship between changes in emittance
and changes in seif-field energy. Wangler et al. presented
numerical simulations showing emittance growth in one
quarter of a plasma period. However, this surprisinglg
rapid growth was unexplained by the analysis, which di
not treat time dependence.

in the present paper, we first solve for the beam
internal motion as a function of time and then calculate
the moments. The rms emittance is shown to reach its
peak value in about one quarter of a plasma period, in
agreement with the simulations of Wan% eret al.

We separate the mean-square emittance into a ther-
mal part and a fluid-flow part.. For a strongly space-
charge dominated warm beam the fluid motion during the
initial emittance growth is the same as for the corres-
ponding cold beam, except for a slight change in timing.

Thus we do aimost all of the analysis on cold beams,
gaining mathematical simplicity. After calculating the
explicit time dependence of the cold-beam emittance, we
show how to incorporate the thermail part. We aiso dis-
cuss asymptotic thermalization of the emittance.

To simplify the formulas we will take the model
(easHEf generalized [S]) of non-relativistic, singly charged
particles propaqating in vacuum. The beam energy is
assumed much larger than the space-charge potential,
allowing the wusual approximations, that the beam
particles all have the same longitudinal velocity v, and
that the transverse velocities are much smailer than v.

We will treat both round beams and sheet beams.
Round beams are by definition azimuthally symmetric, and
sheet beams are by assumption symmetric in the direction
of transverse motion, x. This symmetry means that oniy
the upper half (x 2 0) of a sheet béam needs to be
considered; all x-integrals will start from zero.

We begin with the simpler case of sheet beams.

I, SHEET BEAMS
Space Charge Field

If the beam density is n(x,z), the number of particles
per square cm within haif-width x is

Ne(x,2) = 0f(n(x‘,z) dx,. (1

Poisson's equation (for singly charged ions) gives Ny /x =
(4re)™ ' (3/0x) Eg(x,z) where Eg is'the x-component of the
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space charge field, and where the term 2Eg,/9z has been
dropped. This is justified if the beam is re%sonablg thin;
i.e., if (kh® <« 1 where k is the channel focusing wave
number and h is the beam half-width. Integrating,

Eg = A4fteN, 2)

ti i

As stated in the introduction, we will begin b
analgzin%vcold beams; thermal motion will be include
later. e consider individual particles in a2 uniform
channel with linear external focusing:

X7 = -kZx + PN(%,2)/N (3)
where x** = d2x/dz2, N is the haif-beam line density (per
cm2), and

P = 4mNeZ/mv2 (4

i?\ the normalized line perveance, representing total space
charge.

or a cold beam the particle motion is initially
laminar. We will show in the next section that it remains
laminar for at least the distance \/4, where A = 211/k.

Thus we begin with the ansatz of laminar motion over
arange O < z < Z. where the critical distance z.> M4 is
to be calculated <‘.later. Since no trajectories cross, Ny is
preserved for each particle at its position x(z).

If we write E for the initial position of the particle
that is currently at x(z), then Ny(x,z) = Ny (E,0) for all x in
the laminar range of z, so that the space-charge term in
Eg. (3) is constant. Using the abbreviation Ny(E,0) = Ny(E),
we define the equilibrium position

Xa (E) = (P/k2) Ny(E)/N (S)
and get the linear equation
X+ kZ(x - x(E)) = O (6)
For the initial condition x°(E) = 0, the solution is
x(£,2) = xa(E) + (& - xa(E))coskz (7N
Traj i

Laminar motion ceases if two beam elements with
initial separation dE are later separated bg dx =Q; ie, it
ceases at the distance z. where the derivalive dx(t,z.)/dE
vanishes. From Eq. (7)

dx/dg = dxo/dE + (1 - dxg/dE) cos kz. (8)
From Egs. (1) and (5),
dxo/dE = n(E)/n (9)
where ¢ Y
ng = NKkZ/P. (10)

We define the plasma frequency by wno? = 4mmeZn,,/m. The
distance the beam travels in one plasma period is Ay =
211/ o Using Eqs. (4) and (10) we see that Apg = 211/k
which 1S the same as A, defined earlier.

Combining Egs. (8) and (9),

dx/dE = n(E)/ny + (1 - n(E)/ny) coskz. (1)
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Laminar motion ceases at the critical distance z. where
the left side vanishes:

-1

COS KZ¢ W (12)
Laminarity Criterion: If n(€) > ny/2 forall g <h,

there is no solution; z. does not exist, and the motion is
laminar for all z in the cold beam limit.

If n(§) < n,/2 over some range of E, then the part of
the beam with the lowest densit% will cross trajectories
first and define z.. (This point of minimum n will be
called £..) Beyond Z = 2., the linear equation (6) is invalid.

If Z exists, then it always lies between A/4 and A/2.

seam Density Time C

(N Laminar motion implies n(x,z)dx = n(E)dE, So, using Eq.

Ny
1+ (ny/n(E) - 1) cos kz

n(x,z) 3

where the x dependence is found by simuitaneous use of Eq.
(7). Note that n(x} becomes uniform at z = A/4 and then a
density reversal occurs: particles originating in under-
dense regions find themselves in overdense regions and
vice versa.  If the jaminarity criterion is violafed, then
n - e as z -z for particles originating at £.. After z. a
shock-iike phenomenon occurs which 1s illystrated in a
later section.

If there are gaps in the density profile, then Eq. (11)
needs some modification (5] For such cases, z. = \/4.

For any cold-beam initial profile, contindous or not,
matched or not, the density at A/4 is uniform and equal to
the density of a matched beam. This surprising and very
important resuit comes from the linearity of £q. (6) and is
not quite true for round beams.

Rm i
Averages over density profiles are defined by
<gxz) = NI Of'dx n(x,2) gx). (14)
Changing the integration variable from x to the initial
value g, -
<gxz) = N 0f"ar-; n(E) g(x(E,2)). (15)
For the mean-square beam width, we use the notation
X%(z) = <x2. Defining C = cos kz and using Eq. (7) we find
p 2 P
X2(z) = | ——(1-C)+ XoC| = UpngXe ——.C(1-C). (16)
Xq is the initial value of X and Up, is the initial value of
the beam shape factor (which is zero for a uniform beam):
Ug(z) = 2 2Y3W/PX (17a)
Ww(z) P<xNy>/N (17b)
is the virial moment [3]. For discussion, see Ref. [S] which
?ives a table of U, vaiues; Uy, is the normalized free seif-

ield enerqgy for a sheet beam.
Eq. (1

where

is greatly simplified for a matched beam.

Matching
In £q. (16), whatever value of X, is chosen there will

be fluctuations in X (unless the initial profile is uniform).
But certain choices give 2 matched beam in the sense that
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the fluctuations are quite small. A particularly simpie
choice gives what we cail A/4 matching: we choose X, the
value of X at z = 0, to be equal to the value given by £q. (16)

atz=\4
X2 = X2N4) = (P/k2)2/3 (18)
and £q. (16) simplifies to

X2z) = XOQ[I = Upg COS kZ (1 - Cos k2) ] (19)

Eq. (18) gives the same matching as the equivalent beam
approach%l,2,4l. Reference {5] also describes another type
of matching which gives less than haif the ripple.

Rms Emittance
We use Sacherer's definition of rms emittance [2]

€2 = «x2><x2> - (xxH2 (20)
We have already found < x2 > [Eq. (16)]. The other moments
may be found in the same way. When they are inserted in
Eq. (20) many terms cancel, leadin% to a simple expression
valid whether the beam is matched or not [S] If we
specify that the beam is A\/4 matched then we can write

U
€2z) = % XgS Ung (! -—r‘::l)sin2 kz.  (21)

This may be compared with the result from moments {S],

ie2 = —-P—

dz ¥3

The factor (1 -Upo/4) for typical initial beam profiles is
usually within about 1% of unity. This factor arises from
the small variations of X given by Eq. (19).

It the laminarity criterion is satisfied, then &(z) ~
|sin kz] indefinitely, as,in Fig. 1a, where the initial
profile is n/ny = 1.2~ 0.6E2 for < |,and O for £> 1.

There arg two thes of profiles which develop non-
laminarit%:( (1) profiles with gaps and (2) continuous
profiles. We discuss these cases in the next two sections.

3y 3
x3@) 2 Un (22)

Profiles with Gaps; Merging Beams

if there are gaps in the initial beam density profile,
the emittance jumps to a substantial vaiue at z = A/4 and
stays essentially constant thereafter. The physical basis
for this phenomenon is discussed in Ref. [S].

Fi%. b, obtained by numerical simulation (7], illus-
trates the effect. It shows € vs. z/A for 6 beams injected
into one channel; the typical parameters are discussed in
Ref. [S]. The emittance up to z/A = 1/4 agrees with our
next analytic resuit.

To analyze the emittance for a profile with gaps, we
choose the simpiest model: ™ segments each having the
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Fig. 1. Oscillatory and non-oscililatory emittances.
(a) Initial profile satisfies laminarity criterion.
(b) Merging beams with gaps in profile. See text.
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same uniform density and the same width, and separated
by distances equal to this width. For A/4 matching we
P2 M2 -1

find [S] 1/2
3k3 M [4r12-3

] sin kz

for z < /4. The factor before sin kz equals 0.5 with cor-
rection < 1% for M> 3. In most practical cases, € ~ |/M.
Putting in numbers (see Ref. [S]), one finds that segmented
beam emittances can jump to undesirably large values
unless M, the number of beamlets, is large. This jump
could occur in beam merging as proposed recently for
some applications involving sheet beams or round beams.
Our results indicate what could happen in either case:
prompt, permanent and substantial emittance growth.

€(2)

in iles; W

In this section we discuss cases where n(E) is non-
vanishing out to the beam edge but n(g) < n,/2 for some E,
Eq. (12) gives the point z = z. where the trajectories will
cross. As we have shown, the phase space dynamics of
cold beams are easily and exactlig described up to this
point. Before z. is reached, the distribution on the (x,x")
phase plane is a well-behaved curve with slope

= (1 =-n(§)/ny) k sinkz

ax” )
ax n(€)/ny + (1 -n(E)/ny) cos (kz)

ax

dx’/dg
dx/dg

(23)

Comparing with Eq. (12) shows that this slope is finite for
Z < 2. so that x°(x) is single valued. As z - z. the curve
steepens like the shape of a wave about to break. Although
this occurs in phase space, not real space, the subsequent
behavior is sometimes referred to as wave-breaking (6]
The effect in real space (for a cold beam) is that the
charge density becomes singular as z = z [Eg. (13)]. After
this singularity Eq. (6) must be replaced by (3).

Although our main purpose here is to present analytic
results, we illustrate the effect with a typical numerical
simulation [7]. The initial density profile was chosen to
be n/ny = | - 0.7cos(nE/h) for § <'h, withn =0 for E> h.
Fig. 2 shows the steepening of dx’/dx and the wave-
breaking in phase space. It also shows the corresponding
densitt}; profiles which exhibit phenomena resembling
shock fronts propagating from the singuiarity.

The rms emittance up to z = z. agrees with Eq. (21).
Later its behavior is intermediate between F igs. 1a and 1b,
showing damped oscillations. Very much later, the beam

max}; reach equilibrium; equilibrium profiles are nearly
uniform for space charge dominated beams. Ref. [S] shows
that a uniform beam has minimum self-field energy for a
given X. The final steady state for a matched beam would
ave about the same rms emittance as at the initial peak;
this is shown at the end of the next section.

Ih 1

We can divide any mean-square emittance into a
thermal part and a fluid-flow part [S]. We use the symbol
(«a)zy to denote a local average over velocities. For an
value of x we define the fluid velocity u(x,z) = (x"),, an
the specific stress tensor T(x,z) ((x"=u)?),y, Which
gives the temperature if the distribution is thermal. Then

€2(z2) (X2H<T> + [<x2><u2> - <xu>2]. (24)

For a cold beam durin% the period of laminar particle
motion, given by Eq. (12), all the emittance is due to the
flow term in brackets. But in general we have

€2 €2

A i i

total thermal * €fuid- (247

For warm beams we show in Ref. [S] that Eq. (21) still
applies, at least up to z = \/4, to the fluid part of the
emittance if a slight correction is made to k. For matched
beams (X nearly constant) the thermal term in Eq. (24) is
essenti:llg constant; for our initial conditions €ypnerm(2)
= eo an

1/2

yvhsr? l[< ]is the slightly corrected wave number discussed
in Ref. [S].

Eq. (25) resembles a sheet-beam version of an
equation due to Struckmeier, Klabunde and Reiser -- see
Eq. (15) in Ref. [4]. What is new in Eq. (25) is that it shows
that the upper limit mentioned in (4] is actually reached
and shows that it is reached at z = \y/4.

If wave-breaking occurs, then energy is transferred
from the fluid term to the <T> term, in a non-thermal wa%
at first. Asymptotically, compiete thermalization coul
occur. For any time scale, we can use the invariant (twice
the total energy) [8]:

Ty + <> + k2¢x2> - 2W(2)

Erot(2) = [602 .

(26)

where W(z), the virial moment, is related to U,(z); see Eq.
(17). If the beam becomes more uniform, W increases and
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Fig. 2. Example of wave breaking in phase space and shock
formation in configuration space; z/\ = 0.0, 0.125, 0.25,
0.375, 0.5, 0.625, and 0.7S. Upper row shows phase plots;
lower row shows corresponding charge densities. These
results during the laminar regime agree with Egs. (23) and

8L 885-1931

(13). According to Eq. (12) wave-breaking starts at z. =
0.32A. This figure fllustrates cold beam behavior. Space-
charge dominated warm beams show similar patterns in
the phase plane; their densIt% proriles for z 2 z; show
similar shock-like structures but are smoother.
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therefore so does <u?> or <T>. Asymptotically, Ue = 0,
and also Upes = O to high accuracy for a space-charge
dominated beam. Egs. (24) and (26) yield

X oo p

€oo =

1/2
3—‘; X02(X oo = xo)]

and (o) = €(N\y/4) if Xo0= Xo. But see Ref. [8] if X=X

11, ROUND BEAMS

Exact resuits are not obtainable for round beams, but
perturbation analysis gives accurate resuits which are
simiiar to those for sheet beams. We find:

(a) The criticai density for laminar particie motion
1S again haif the equivaient uniform density but with a
rirst order correction, typically around 10%.

(b) Different parts of a non-uniform round beam
oscillate at slightly different frequencies. The correction
is of second order (usually less than one percent), with
negligible effect except perhaps for long tgne scales. The
freguency for a cold beam is essentiaily 2k<.

(c) The particle excursions are noniinear, so the
beam density is not precisely uniform at z = A\,/4, where
Ao = 2M/W,. However, the nonuniformity is so smail that
essentially all the free self-field energy is converted into
kinetic energy and emittance growth.

Again, we start with cold beams and discuss thermai
effects later,

Particle Iotion

IT the beam density 1S n(r,z), the number of particles
per cm of length within radius r is

Np(r2) = OJ'h2frrn(r,,z) dr,. 2n

The self fieid is Es = 2eNr/r and the total perveance IS

K = 2NeZ/mv2 (28)
where N IS the total number per cm. The external rfocusing
force is assumed to be linear:

r* = -kZr + KNp(r,2)/(N 1) (29)

and for a cold beam the particle motion is laminar for z
less than a criticai distance z.. We wrlte‘p for the infttal
position of the particle that is current# at r(2); thus

Np(r,z) = Nu(p,0). Using the abbreviation Np(p,0) = Nn(p),
we define t?\e equilibrium position
K Np(p)11/2
re@ = [— _rg_] (30)
k2 N
so that
re k2(r -rg2/r) = 0 (31

in the laminar range. This equation can be solved by the
Lindstedt-Poincaré method discussed in (9] The solutifon,
for the initial condition r(p) = 0, is

82 . 1
rp,2) = re[l + 5CoS Wz + 7(1-3 cos 2(.)2)+---] (32)
where
8) = m - n%6 (33)
n@ = p/rglp) -1 (34)
wploy = 1+ 82/12 (35)
w2 = 2kZ (36)
MO3-12

We can show that m vanishes for all p if the beam is
matched and uniform; therefore is a uniformity
parameter. we onlg need it to first order in the followin

results, but second order terms must be kept in Egs. (32

and (33) in order to derive those resuits [S].

Traj ing for

As in the case of sheet beams, laminar particle

tinu Profile

motion ceases at the critical distance z. where the
derivative dr(p,z.)/dp vanishes. From Egs. (29) and (30),
(radrg)/(p dp) = n(p)/ny; (37)
for round beams
ng = NkZ/mK. (38)

Using Eq. (32), we find to first order in m

LM [ e 20 -02] a9

where C = coswyz. The condition for trajectory crossing
is found by setting the ieft side equal to zero and solving
for coswgZc. Defining 3 as the initial beam edge (where
the densityTalls to zero) we get the following:

Laminarity Criterion (to first order in m):

Ny 4
'f nlp) > 3-(1 ?11) for all p < a,

then the motion is laminar for all z. The criterion is the
same as for sheet beams except for the correction factor.

Beam Density Time Dependence
In analogy with sheet beams, laminarity can be ex-
pressed as

2nrn(r,2)dr = 21pn(pidp. (40)
Eq. (39) gives
n(p)
n(r,z) (a1
) L [y MO, 20 (- 0p2
- [1 nu][c 2n0-02]

where the r dependence is obtained by simultaneous use of
Eq. (32). If the laminarity criterion is violated, shock-
like behavior (similar to that in Fig. 2) will begin at z = z.
if the initial profile is continuous.

Rms Beam Size and Matching
~Equation (32) shows a complicated time behavior. We
will not consider the exact time dependence of RZ = <r?>
but will only calculate it at z = \,/4, where
Ag = 21/,
At this point the density profile is nearly uniform so that
essentiaily all of the free seif-field energy is converted

into fluid energy.
Averages over density profiles are given by

N Ojadp 2mp n(p) g(rp,2))  (42)
where we used Eq. (40) to change the integration variable

from the current position r to the initial value p. The
initial mean-square radius at z =0 is

Ry2 = N“ojadp 21p3 n(p).

<gxz) =

©> = (43)
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At Z = N\y/4, Ea. (32) gives, to first order in 7,
<r2>(Ag/4) = <rg2». (44)

From Egs. (37) and (42), < rg2> = K/2k2. It follows that
the condition for \y/4 matc?nng is

Rp2 = K/2k2 (45)

Peak R i

In terms of the radius, Sacherer's x emittance, Eq.
(20), is /2

e = %[<r2><r’2>— <rr‘>2] .

The above moments at z = A,/4 are readily evaluated from
Eq. (32) to first order in m. But it is easier to calculate
the peak emittance from the free seif-field energy; Ref.
{S] slrt\ows that the two methods give nearly identical
resuits.

Our exact soiution for sheet beams, Eq. (21), turned
out to be closely related to a differential equation for
emittance vs. free ener%g, Eq. (22). The analogous differ-
enttal equation for round beams was given in Refs. (1}, [3],
and [4]. In Ref. [4], it was integrafed by treating R as
constant. This yielded a maximum emittanCe growth

A€dmax) = KRy2Uny /16 (47
where Uy, is the initial value of the normalized free
self-fiela energy, given by

Up(@ = 4 F or N2 Nr - (1 + 4Inb/RY2D). (48)

(One chooses b to include all the beam.) The analysis used
in [1,3,4] did not show how rapidly the maximum emittance
would be reached. But if, as in Part |, the density profile
at z = \y/4 is essentially uniform, then we find

€2(0g/4) = KRy2Upy/16. (49)

we have confirmed such uniformity for typical profiles.
An example is the parabolic profile:

N 2
il 2l

(46)

np) = (50)

In Ref. {5] we found analg'ticany the density profile at z =

Ap/4 3s an explicit function of r. The resuit is plotted in

Ff5. 3 where it fs compared with the initial profile. The

densit%is clearlg flat enough at Z = A\y/4 to make Un(2)
q

negligible. Thus, £q. (49) gives an accurate resuit.
T I T
z2=0
=} —
Z=X4
oo
<
[l
n o —
(=]
o | _l 1
0 0.5 1.0

r/a
XBL 865-1932

Fig. 3. Analytic density profilesat z=0and z = \,/4.

To confirm this point, we calculated the emittance at
Z = Ag/4 using the free energ%g Unq. EQ. (48), and compared
it with the result obtained from the %%namics using Egs.
(32) and (46). We found €()\,/4) = 0.0374 Ry¥K using the
first method, and 0.0375 Ry/K using the second. = The
uniformity at X\,/4 (Fig. 3) is responsible for the high
accuracy of the free energy caicuiation.

Thermal A totic Emittan
For matched, strongly space-charge dominated beams
the total emittance at z = \y/4 is

K 1/2

See the discussion in the last section of Part [. Simu-
lation studies by C.M Celata (10} have confirmed that Eq.
(S1) gives accurate results for a space-charge dominated
beam. Our prediction that the emittance peaks at z = A\,/4
agrees with the simulations reported by wangler et al. ?4]
in fact, the present study was inspired by a desire to
understand the physics behind those surprising resuits.
The invariant corresponding to Eq. (26) is{8]

<Tp> + <upd> + k2¢r2> + KU(2)/4-KInR = Const.

where upn and T are radial versions of the quantities in
Eq. (24), and Up(2) is defined bg Eq. (48). For the asymp-
tog’c case discussed under Eq. (26) we have u. =0, T =0,
an

oo k2 K R” 1/2
€o * —R_(; [Gzpeak + Y ROZ(ROZ = Roo?) + p ROZ In —R—(; ]
which agrees with Ref. [4] if R, = R, We can eliminate
R for cases where the beam size is mismatched [8]. The
result is the same as in (4] but with additional terms.
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