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Abstract 

With the growing interest in high-current linear acceler
ators a broader understanding of emittance growth has 
become desirable. Recently, the idea of relating emit
tance growth to the release of electrostatic field energy 
has been considered as a useful concept for a better 
understanding of the origin of emittance growth and for 
deriving simple estimates for growth under certain con
ditions. The derivation of generalized equations for 
emittance and field energy valid in periodic focusing and 
for continuous or bunched beams is outlined. Calculat
ing the field energy for some standard models of charge 
distribution allows a di rect estimate of the emittance 
growth due to initial mismatch. For the case of emittance 
transfer between different degrees of freedom due to 
intrinsic resonances (equipartitioning) we present an 
approximate formula. These estimates are well confirmed 
by computer simulation. 

I. Introduction 

Until recently numerical simulation has been the only 
tool for calculating emittance growth in linear acceler
ators or In space charge dominated beam transport. An 
inherent difficulty with simulation is that it does not 
provide in a direct way the dependence of emittance 
growth on different system parameters; furtheron, the 
origin of emittance growth is often not sufficiently tran
sparent in simulation studies, if a theoretical model is 
lacked. This is an important issue in design studies, 
which have maximum current transmission as a goal. 

The idea of deriving a differential equation to directly 
describe the emittance change is not a new one. A first 
approach has been attempted by Lapostolle', who 
derived a relationship between rms emittance and a 
space charge field energy term for a continuous beam in 
a continuous focusing channel. Subsequently, this idea 
was not pursued further. Of greater practical success 
have been the rms envelope equations, which where 
derived by Sacherer% in 10, 20 and 3D. They allowed to 
calculate envelope oscillations, provided that the rms 
emittances were known a priori to be constant. 

The idea of formulating an equation for the rms emit
tance revived, after Struckmeier et al.) had observed in 
their numerical simulation work that the extra field 
energy due to a non-uniform initial charge distribution 
is transferred into emittance growth within one cell. 
Postulating the equivalence of field energy and emit
tance (i. e. thermal energy), they estimated the emit
tance growth due to homogenization of an initially 
nonuniform density and found good agreement with simu
lation. At the Vancouver Particle Accelerator Conference 
Wangler et al.· presented a differential equation for 
emittance and nonlinear field energy valid for a contin
uously focused round beam and found that it was accu
rately observed by simulation. They were thus able to 
justify rigorously the heuristic formula by Struckmeier 
et al. and stimulated further work to extend this con
cept to more general and realistic situations. 

I n this paper we present a new generalized equation 
relating emittance to (nonlinear) field energy valid in 
periodic focusing and full 3D. The equation is tested 
and confi rmed by computer simulation. Its potential to 
predict initial mismatch emittance growth is obvious: 

from some preliminary tests it appears to be a valuable 
tool also for studying longitudinal-transverse emittance 
transfer. An analytic formulary relevant to this has 
been derived from the generalized equation and is pre
sented in a different contribution to this conference' 

II. Generalized Equations for Emittance and Field 
~ 

We assume single particle equations of motion in x,y,z 
(deviations from bunch center) with linear and in gen
eral time-dependent external focusing forces and arbi
trary space-charge forces (nonrelativistic and s = v . t) 

x" + k (5) x - ~ E (X,y,Z;5) x iii'r x o (1) 

and similar in y, z. The electric field g is assumed due 
to the beam space charge and given by Poisson' s 
equation 

~·E = -~'¢ = 9L n (X,y,Z;5) - - ( o 
(2) 

For constant focusing forces the total energy is a con
stant and can be written as 

H _ T + V + W =nst. 
ex 

with N the number of particles and 

T _ ~ ~ (~+ y" + z") 

(kinetic energy in beam frame) 

Vex - .1. ~ (k x' + k y> + k z' ) 
2 x Y Z 

(potential ener9Y due to external focusing) 

w _ ~o III E2 dx dy dz 

(3) 

(4) 

(5) 

(6) 

(space charge field energy calculated over a sufficiently 
large volume V) 

where the upper bar indicates mean square averages. 

The rms emittances given by 

(' 
x 

2 

16 (x' xl2 - xx' ) (7) 

and similar in y, z are closely related to the respective 
terms in the "thermal" energy T due to the fact that for 
a high-current beam )(2, yr and zr change only little. In 
principle, any term in T and thus the respective emit
tance can grow on the expense of the remaining terms in 
T or the potential and field energy. The energy conser-
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vation law Eq. (3) does not limit the exchange of energy 
among these terms, hence we "equire an additional con
straint involving directly the emittances. 

Such an equation can be derived for the general case of 
periodic, i. e. time dependent focusing where not even 
the total energy of Eq. (3) is conserved. (For details of 
the derivation see Ref. 6.) Starting from Vlasov's 
equation 

(8) 

and using the definition of rms emittance in Eq. (7), we 
can show that 

3.-. (2 = ~ (x2 x'E - xx' ;E") ds x ~- x x (9) 

and similar for y,z. Here the averages are taken with 
. the distribution function as weight. The i("l (as well as 
Y', Z2) has been eliminated after multiplying Eq. (8) 
by x', xx', x" etc. and obtaining the respective 
moment equations. 

Eq. (9) is not a useful equation, since the averages 
involving the electric field are yet unknown. By adding 
to Eq. (9) its counterparts in y, z, we can show' that 
the electric field averages can be expressed in terms of 
the electric field energy 

1 d 2 1 d, 1 d 32 dW dWu - _( + - _( + - - (2=- __ ( ___ ) (10) 
x' ds x T ds Y ?" ds Z rmrN ds ds 

In Eq. (10) we have emitted a bunch shape factor )" in 
front of dWdds, which is in practice very close to uni
ty. (For a Gaussian density it is 1.051, and for a para
bolic 1.006.) Also, we have assumed rotational 
symmetry in deriving Eq. (10), i.e. ;r = yr and E = E • 

Wu is defined as electric field energy of the equrvaleXt 
(i. e. identical rms size) uniformly filled ellipsoid. This 
uniform field energy calculated inside a large sphere of 
radius R results as: 

I.,U = ~;;;:a [~(1 - f + ~ f) - ~ ] (11) 

where a is the semi-axis in x, y, and c in z. fCc/a) is 
the well-known geometry factor' which can be approxi
mated by (3c/a)-' as long as 0.8 ~ cia ~ 5. 

The significance of Eq. (10) is that its r.h.s. vanishes 
for a uniform charge distribution; the change of total 
emittance is thus related to the change of "nonlinear" 
field energy, i. e. the difference between actual field 
energy and that of a uniform bunch (where E increases 
linearly from the bunch center). This "nonlinear" field 
energy is thus responsible for emittance growth and we 
want to examine to what extend we can use Eq. (10) to 
estimate possible emittance growth in real situations. 

III. General Properties 

1. Minimum Field Energy Theorem 

We consider the variational expression 

( 12) 

with at Lagrange multipliers to keep the rms dimensions 
constant. To find the minimum field energy density dis
tribution we calculate the variation of S under a density 
perturbation on and find, after partial integration, 

-1 

05 = fff I~+N (a1x2 +a2T+a3z') Ion dxdydz=O 
v 

( 13) 

with a boundary integral negligible for a large enough 
integration volume V. on is defined by an arbitrary dis
placement vector ox, hence 6n = Vn • 6x. We thus find 

that 6S = 0 requires either ~ = -N-1(a1x' + a2Y' + a3z2) 
(interior of beam) or n = 0 (exterior), which corre
sponds to a uniformly charged ellipsoid as minimum field 
energy solution. 

It is well- known from computer simulation that a 
high-current beam has a tendency to approach a uniform 
density with rounded off edge in the space charge limit. 
For a nonuniform starting density we thus expect the 
excess "nonlinear" field energy to be transferred into 
emittance. A uniform starting distribution, on the other 
hand, requires some small amount of nonlinear field 
energy to develop the rounded off edge. In this case its 
rms emittance could even shrink by some small amount, 
which is not forbidden by Liouville. This has been 
shown previously' for a 2d beam with initial KV-distri
bution. here it is useful to note the difference between 
rms emittance and real emittance: a beam with real emit
tance zero going through a nonlinear lens will have a 
finite rms emittance behind it due to a distortion of the 
zero area emittance figure. This can be reversed by a 
second lens of opposite sign. 

2. Shielding 

For a spherical bunch of radius a with Gaussian distrib
ution function we can show, by expanding the density 
in Eq. (2) to its leading term that (except for ria ~ 0) 

n n (0) 
e(r-a)/AD 

[ 1 - rIa ( 14) 

where the Debye or screening length AD is given by 

( 15) 

and the plasma frequency by 

w' p 
( 16) 

I n the harmonic betatron oscillation approx imation one 
finds readily that 

1 v 

liS va 
( 17) 

(a similar result with 1//15 replaced by 1/3 is found for 
a waterbag distribution). 

In the high-current limit we thus obtain that self-con
sistent distributions are uniform in space, except for a 
boundary sheath of thickness AD' 

IV. Comparison with Computer Simulation 

By inspecting Eq. (10) we can, in principle, identify 
the following sources of emittance growth: 
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Initial Mismatch - Continuous Focusing 

An initially nonuniform density profile deviating strong
ly from the self-consistent profile described by Eq. 
(14). (17) leads to emittance growth. which can be 
directly integrated from Eq. (10) for a spherical bunch, 
with kx = k y = ~ and Ex = Ey = EZ = E: 

2 
v (-if - 1) r::, U ( 18) 

For the integration we have used that the rms size 
remains practically constant and defined the "nonlinear" 
field energy 

U 

w _ \"" 
u ( 19) 

with a normalization constant Wl :: N 2 q'I(40'ITEo a), which 
is the field energy of a uniform sphere of the same rms 
radius (= a). From the initial and final values of U we 
calculate the ratio of emittances 
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Fig. 1: Computer simulation of spherical bunch with 
continuous focusing. Emittance growth factors from 
Eq. (20) and through direct evaluation practically 
coincide. 

This agrees with the respective formula in 2d beams, 
except for 113 replaced by 1/2. 

In Fig. 1 we show results of simulation with different 
initial distributions matched to a constant focusing 
channel by means of the rms envelope equations'. We 
have calculated U as a function of time in the following 
way: W is determined as Coulomb potential summed over 
all pairs of particles, Wuaccording to Eq. (llJ. We have 
then compared Eflti according to Eq. (20) with the 
direct result from scatter plots. The agreement in runs 
with 5000 particles is excellent; deviations are typically 
one per cent only. 

Significant emittance growth occurs only if U. is notice
ably larger than the self-consistent final1value. For 
practical purposes we can thus ignore U

f 
in Eq. (20) 

and obtain 

1 v~ 1/2 
[ 1 +"3 (V- - 1) Ui ] (21) 

For the Gaussian case in Fig. 1 we have U i = 0.26 and 
thus from Eq. (21) EIEi:!> 1.52 (3.1) for vivo = 0.25 
(0.1). For the waterbag distribution the respective 
values are Ui = 0.057 and thus Efh i :!> l.13 (1.7). 
These values agree pretty well with the average values 
of Fig. 1. 

It will be noted that the semi-Gaussian distribution with 
uniform initial density behaves different from what we 
have predicted in section 111.1: the emittance shows a 
slight initial increase rather than a decrease. This is 
due to the fact that microscopically our distribution is 
set up by random numbers. Hence, there is an extra 
electrostatic field energy as compared with a strictly 
uniform distribution, which leads to an equivalent emit
tance growth. 

Initial Mismatch - Periodic Focusing 

The validity of Eq. (10) in periodic focusing with non
spherical bunches needs to be examined separately. 
This is due to the fact that we have omitted the bunch
shape factor X" which is exactly justified only for a 
uniform bunch. In addition, the envelopes in Eq. (10) 
vary periodically and it is not straightforward how to 
integrate the I.h.s. of Eq. (10). We have integrated 
Eq. (10) formally by ignoring the envelope variations: 

(22) 

For a bunch with a roughly 2: 1 ratio of longitudinal to 
transverse semi-axi and transverse periodic solenoid 
focusing we compare in Fig. 2a the I.h.s. and the 
r. h. s. of Eq. (22) and find good agreement in the aver
age. We have also plotted in Fig. 2a the individual 
I.h.s. terms of Eq. (22) and find that they are.Jl.ot 
identical:.-We note that in this case we have chosen x", 
Y'2 and Z'1 equal as initial condition, hence equal ther
mal ~ergies. (According to Eq. (6) we have X'2 = E1 
116 x' for upright phase space ellipses in x, x' and sim
ilar in y, y' and z, z'). The initial mismatch field ener
gy is transferred into roughly equal increments of 
thermal energies in all three directions, but at later 
times the longitudinal thermal energy deviates from the 
transverse ones. 

In Fig. 2b we have plotted the numerical emittance 
growth factors and compared them with the respective 
theoretical values. Here we have determined "theore
tical" growth factors by distributing formally the total 
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nonlinear field energy in equal parts into the three 
I.h.s. terms o.f Eq. (10). This "equipartitioning" 
hypothesis is no.t strictly o.bserved by the simulation. as 
o.bserved abo.ve. altho.ugh the deviatio.n is not too large. 
In fact. we see from Fig. 2 that "equipartitioning" is 
re-established at repeated times. 

Cl • ..., ,. 60' • Clxy '" 15° • Clo.z '" 38° • Clz - 7.5° • Gauss (jstribution 
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Fig. 2a. b: Non-spherical initial Gaussian density 
bunch with periodic (interrupted solenoid) focusing 
and initial equipartitioning (Ez = 2E"y; 0.1; = 1/2 o"y) 
confirming relationship between' to.tal emittance 
change and nonlinear field energy change (a). 
Emittance growth factors are cempared with 
equipartitiened theoretical values (b). 

Initial Mismatch and Emittance Transfer Periodic 
Focusing 

I n Fig. 3 we shew results fer a case with 0 0 .. and "z 
different from Fig. 2. causing a streng initial deviation 
from equipartitiened. The ratio. ef thermal energies 
longitudinal: transverse is chesen 7.5: 1. and from 
previous werk on equipartitiening and emittance 
transfer'·' we expect an exchange of thermal energies 
rsp. emittances. In Fig. 3 we actually distinguish two. 
separate mechanisms: 
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Fig. 3a, b: Same as in Fig. 2. except for oz.= 3.77 O~y 
to. achieve initial non-equipartitioned (7.5: 1) bunch. ' 
Relationship Eq. (20) is again confirmed (a). after 
first cell also Eq. (23). Emittance growth factors 
show slow approach to equipartitioning (b). 

1. A rapid decrease - within the first cell - o.f no.nlin
ear field energy (initial mismatch). which is pre
dominantly transferred into the x and y terms of 
Eq. (10)' i.e. the directions with smaller initial 
thermal energy. 

2. After one or two coherent oscillations there is a 
slow exchange o.f transverse with longitudinal 
thermal energies. Besides a small co.herent o.scil
lation the no.nlinear field energy is practically con
stant. hence we can use the fo.llowing relationship 

6(' 6€-' 6€-' 
X +~ Z '\, 0 (23) +~ '\, 

x' y2 z, 

in agreement with Fig. 3a. 
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Eq. (23) establishes the approximate invariance of total 
thermal energy during the slow emittance transfer 
process. After 50 cells the initial 7.5:1 imbalance of 
thermal energies has been reduced to nearly 1.5: 1 and 
practically levelled off. The respective emittance growth 
factors are shown in Fig. 3b. 

In 20 continuously focused beams the phenomenon of 
emittance transfer has been studied more systematically 
in a paper presented at this conference l 

. 

Eq. (23) can be used to calculate approximately the final 
emittance growth, if as a second condition we assume 
that the final thermal energies are equipartitioned and 
the rms envelopes remain practically constant. With the
se conditions and EX = Ey = E.1. we solve for 

EJ.,f 2 2 ;} 1/2 
+ -

E ... ,i (24) 
E 
.1.,i 3 3 E2 

z,i X2 

and 

1 2 1/2 
Ez,f 2 Ez,i x 

-+- =) 
E:z,i 3 3 E' Z2 

.I..,i 

(25) 

where f indicates final and i initial, after the initital 
mismatch emittance growth of the first cell has been 
estimated separately. Here we use from Fig. 3a that 
E.1. ,i/E.J.." 1:5 and Ez,i EZ '" 1.05 and obt~in for the 
final total emittance growth factors £ ... ,f/E ... - 2.06 and 
£z.f!E:z~O. 76, which agrees within 5 %. ~i~h t~e final 
values in Fig. 3a. We observe that the Initial mismatch 
emittance growth factors can be also estimated from Eq. 
(10)' if we postulate that the nonlinear field energy 
only goes into the directions that have had initially 
much less thermal energy (here x,y). Further formulary 
relevant to this is found in Ref. 5 and 6. 

Periodic Focusing - Structure Resonances 

A further well-known source of emittance growth are 
structure resonances, for .i!)stance by choosing 00 > 90~ 
Multiplying Eq. (10) by x', which varies periodically 
with the focusing structure, we anticipate the 
possibility of emittance growth, if the nonlinear field 
energy term has the same frequency content as the xr 
due to an appropriate multipole oscillation of beam 
density. It is known that 00= SOois a safe way to avoid 
this source. 

Statistical Effects 

The early emittance growth of the semi-Gauss 
distribution in Fig. 1 has been explained by the random 
initial particle coordinates. This is not a problem in the 
real world, but for numerical simulation with relatively 
few particles and a direct particle to particle force 
calculation. Hence some care is necessary for small tune 
depression (i.e. dominant space charge) as shown in the 

following example: The case of Fig. 1 with vivo = 0.1 
has given 27 % of emittance growth due to this 
mechanism for 5000 particles and 135 °6 for 500 particles. 
For vivo = 0.25 the respecitve numbers are 1 % and 14 
%. These numbers can be substantially reduced by 
avoiding random numbers and choosing regular initial 
distances between the particles. 

Conclusion 

We have shown that a generalized equation for emittance 
and field energy is well confirmed by simulation in 3D 
and periodic focusing (interrupted solenoid). Emittance 
change can occur due to rapid initial mismatch and 
"slow" energy transfer for initially nonequipartitioned 
bunches. The generalized equation has been used to 
derive simple estimates for the emittance change. I n a 
further contribution to this conference' more specific 
formulae have been presented. A more systematic 
comparison with simulation will be a further step . 
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