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ABSTRACT 

Accelerating cavities made out of perfect conducting metal 
have only a finite number of resonant modes due to the (nec
.ssary) beam ports. Above the lowest cut-off frequency of the 
travelling modes in the beam pipe no undamped resonance can 
exist. Thus the impedance in this range of frequency cannot be 
obtained by resonator codes such as URMEL [11. The contin
uous impedance above cutoff for cavities of arbitary shape but 
cylindrical symmetry can be calculated by exciting the cav
ity with a beam current equal to the Fourier transform of a 
point charge traversing the structure. Solving Maxwell's equa
tion. for the fields yield. the longitudinal electric field and thus 
by integration the impedance. URMEL has been extended to 
enable such calculalions by setting up an inhomogeneous, com
plex matrix equation for a given frequency. Solving for that 
complex system of linear equations yields the electromagnetic 
field and thus the complex impedance. 

INTRODUCTION 

Some important aspects in the design of accelerating components 
are their influence on the beam, i.e. the instabilities as mode coupling 
or the power loss. and their own behaviour in the working machine, 
e.g. heating of walls. etc.. The calculation of the impedance and 
the evaluation of the wake potential are two equivalent ways to study 
these questions. In this paper a numerical method will be worked out 
to calculate the impedance for a cylindrically symmetric structure, 
as, for example, a cavity with beam ports. 

Any non-smooth parts in the accelerator geometry (e.g. cavities, 
vacuum chamber joints, etc.) cause so-called wake fields which are 
excited by the beam of charged particles. To estimate these effects 
it is sufficient to integrate the wake fields over the time needed to 
pass the structure. This gives the wake potential which is a func
tion of the position. The impedance describes the wake force in the 
frequency domain and can be obtained from the wake potential by 
Fourier transformation. 

For a closed cavity the impedance as a function of frequency has 
only discrete 8-function-like peaks (infinite in number) located at the 
resonant frequencies which are the only modes of the wake fields that 
can be excited in the cavity. There are a number of computer codes 
to ,evaluate the lowest resonant frequencies and quality factors for 
cavities needed for the impedance calculation. e.g. [11. 

Cavities as components of an accelerator are imbedded in the vac
uum chamber. Above the lowest cut-off frequency for travelling waves 
m this beam port no ideal resonance can exist in the cavity since fields 
may travel out of the cavity into the beam ports. The nonzero values 
of the impedance form a continuous spectrum above the cut-off fre
quency. Consequently calculating the impedance by using resonator 
codes can not be used. A way to calculate the impedance as a func
tion of frequency including the region above cut-off will be explained 
in this paper resulting in the extended program URMEL-I. Since the 
work is still in progress only preliminary results are presented. 

DEFINITION OF THE IMPEDANCE 

The definition of the impedance for a resonant cavity is deduced from 
the representation of a cavity as a RLC network: This network con
sists of a sequence of resonators, so that the impedance of the cavity 
is given by the summation over the impedances of the resonators. 
The impedance of one resonator is given by 

1 
Z(w) = . . . 

Iwe + 1/lwL + 1/ R 
(1) 

Since it is intended to calculate the impedance below cut-off using 
the data given by a resonator code such as URMEL! I!, the above for
mula will be expressed now in terms of the frequency w, the resonant 
frequency Wo and the loss parameter ko, i.e. L = 2ko/W5; C = 1I2ko; 
R/Q = woL is used. l/Q expresses the losses. As the resonator code 
assumes perfect conducting metal as walls, I/Q is zero for the solu
tion so that the impedance for any frequency below cut-off can be 
calculated by [21 : 

Z(w) = L ~iwkj 2' 
] Wi - w 

(2) 

with the resonant frequencies Wj and the loss parameters k j , j= 1 ,2, .... 

In general the impedance can be defined as the Fourier transform 
of the wake potential, as already mentioned. Exciting the cavity 
structure by a current on the axis allows the calculation of the longi
tudinal impedance in dependence of a chosen frequency: 
A point charge on the axis of a cylindrically symmetric structure has 
the charge density 

p(r, 'P, z, t) = Q8(r)8(z - vt), (3) 

and its current density equals 

](r,'P,z,t) =p(r,'P,z,t).ii= Qv8(r)8(z-vt)e., (4) 

with Q= charge and v= speed of the point charge. 
This point charge produces the longitudinal wake potential seen by 
a particle following in time an amount r 

1 foo w(r) = - E,(r, 'P, z = vt - vr, t) v dt, 
Q -00 

(5) 

which on the other hand is [3! 

1 foo w(r) = -
2l1' -00 

e'"'' Z(w) dw. (6) 

Some transformations finally lead to the equation for the longitudinal 
impedance: 

1 foo Z(w) = Q -00 E,(r=O,'P,z,w)e,(",/uj'dz, (7) 

where E. is the .Fourier transform of the longitudinal electric field 
E •. 

In concluding this section it should be stressed that there is an 
obvious duality between the study of wake force effects in the time 
and in the frequency domains: 

TIME DOMAIN 
charge density 

p = Qc5(r)8(z - vt) 
current density 

] = QII8(r)8(z - IIt)e, 
wake potential 
W(s) = 
b J~oo E.(O, 'P, z = vt - VT, t)vdt 

FREQUENCY DOMAIN 
transformed charge density 
p = ~e-i(",(u)zc5(r) 

:ransformed current density 

] = Qe-,(",/ ujz 8(r)e, 
impedance 
Z(w) = 
b J~oo E,(O, 'P, z,w)e,(w/uj'dz 

TRANSFER TO A NUMERICAL FORMULATION 

To calculate the continuous spectrum of the impedance in the 
frequency domain above cut-off, a computer code will be presented 
to evaluate the impedance values at any given frequency. For this 
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purpose Maxwell's equations have to be discretized and the resulting 
numerical problem has to be solved. Here finite differences, especially 
the FIT-method 4i, are used for the discretization on a rectangular 
mesh, so that the program is based on the code URMEL i1]. Since 
only the cavity region and a piece of the (infinitely long) beam ports 
is entered as geometry an "open" boundary condition is necessary. 

Maxwell's Equations for the problem 

Because of the cylindrical symmetry the fields have an azimuthal 
periodicity - elf'"'' and their time dependence is harmonic. At the 
present state only monopole fields (m=O), which have just the com
ponents H"" E. and E .. are treated. 
With these assumptions the fields may be written as : 

E(r,'P,z,t) 

H(r, 'P, z, t) 

Re (YZo (E~(r, z) + E~(r, z)) ei(wt+",)), 

Re (VYo H~(r, z) e·(wt+",)), 
(8) 

with Zo =~~o/(o and Yo = I/Zo and complex E' and H'. 
Consequently Maxwell's equations in the integral form that will be 
discretized read as : 

1 H'.di 1M 
w 1 - -= i _. f.E'· dA + t, 
e A. 

.w 1 -, -= -I - . ~.H· dA, 
e A. 

where aA stands for the boundary of area A. 

(9) 

(10) 

Since the structure is excited by a beam current I' with frequency 
w the fields are composed of source fields and source-free fields, i.e. 
an inhomogeneous part that is caused by the current and the ho
mogeneous part. So far only relativistic particles are considered, i.e. 
v = c. 

The current l' is given by : 

, { e QYZo e-·k(z-z,,) 
I.(w,r,z)= ° 

with the wavenumber k = w/e. 

for r = 0 
otherwise ' 

This current induces the inhomogeneous magnetic field 

H" ( ) = e QYZo -ik(z-z.,) 
'" w,r,z 21fr e , 

with the phase kzo and where H = H~ + H~. 

Treatment of the open boundary conditions 

(11) 

(12) 

The cavity is excited by the current of angular frequency w. If w/27r 
lies above the lowest cut-off frequency for travelling modes in the 
beam port the induced fields won't stay in the cavity but will travel 
into the tubes to both sides, i.e. they are proportional to eik'(z-z,,) 

to the left of the cavity and e-ik'(z-z,,) to the right of the cavity. Ie' 
is the propagation constant of the waves in the beam tubes. In the 
frequency range just above cut-off where only one type of waves can 
propagate k' is explicitly known. For higher frequencies k' = k is 
taken as approximation. 
The geometric structure used for the numerical calculation has to 
have a finite length, i.e. the beam ports have to be cut at some 
convenient distance from the cavity. At these boundaries the reality 
of an open beam port has to be simulated. The difference equation for 
the radial electric field component at the left (right) boundary would 
need a value of H", and H~ for an imaginary mesh point laying outside 
the grid (compare the next section). These values are calculated, as 
indicated below. 
From ( 12) it follows for H~ 

H~(w, r, Z - d) = H;(w, r, z) eik6 =(l + ikd) H~(w, r, z) (13) 

For the homogeneous part of the azimuthal magnetic field the follow
ing relation is valid: 

H.~(w,r,z-tl.)= (l-ik'd)H~(w,r,z) at the/eft (14) 

H~(w,r,zTd)= (l-ik'tl.)H~(w,r,z) at the rIght (15) 

These first order equations are used to set up the difference equations 
for grid points at the right and left boundary, and they allow the 
simulation of an open boundary. 

Discretization 

Maxwell's equations are discretized with a special method of finite 
differences, the FIT-method [4], for a rectangular grid. This method 
uses two dual orthogonal grids and allocates the unknowns on these 
grids in a special manner so that the connection between area and line 

integrals is fulfilled in a natural way. Since the method presented here 
is baaed on URMEL [I], this paper will only point out the differences 
from URMEL and refers to the documentation about URMEL for 
more details. 

The difference equation for H~ is deduced from ( 10) while the 
discretization of equation ( 9) gives the difference equations for E. 
and E.. The setup of the equations for E. at the boundary uses 
the open boundary condition (compare ( 13), ( 14) and ( 15)). The 
difference equations fOf E. UIIe for r > 0 the relation rH~(w,r,z) = 
(r - tl.)H;(w, r - tl., z) which holds because of ( 12); on the axis 
(r = 0) the current does not vanish but can be expressed in terms of 
H;. 

Thus the discretization of Maxwell's equations leads to difference 
equations for each unknown field component. Taking the one for 
H~ and replacing the other components by their difference equations 
yields finally a system of linear equations with the homogeneous az
imuthal field components as unknowns and the inhomogeneous ones 
as right hand sides. 

THE NUMERICAL PROBLEM 

The matrix of the linear system 

Discretization of Maxwell's equations leads to a complex linear sys
tem of equations 

M h = (A ..,. ik'D - k2 I) h = k2 h-' (16) 

The matrix of this system has the dimension of N x N where \j stands 
for the number of mesh points. The solution vector h is the vector 
(H~l' ... , H~N) with the homogeneous azimuthal magnetic field com
ponents. The matrices A, D and I are purely real; the last one stands 
for the unit matrix. The matrix A equals the matrix of URMEL "I. for 
the monopole case. D is a diagonal matrix expressing the open bound
ary condition. The right hand side h-' is the vector (H;l>'" H;N) 
with the inhomogeneous azimuthal magnetic field components. 

The matrix A has a band structure with only four off-diagonals: 
obviously M has the same structure. Furthermore A can be made 
symmetric as is explained in [I] but M is not hermitian and not even 
positive definite which is needed by nearly all iterative numerical 
methods, i.e. a system with complex indefinite system matrix has to 
be solved. 

Solution method for the linear system 

The program consists mainly of three parts: The setup of the matrix, 
the solution of the linear system and the evaluation of the fields and 
the impedance. As a first step the first and last parts have received 
the greatest effort. The present version is limited to a few hundred 
mesh points because it uses a standard direct method which gives 
acceptable results for the solution of the linear system. The final 
program version will use a fast solver for the system of equations, 
which will allow as many points N as URMEL (e.g. 5000 on IBM, 
2Mbyte) and, as it is intended, will also allow for dipole modes. 
Evaluation of the impedance 

The solution of the linear system gave H~. The electric field com
ponents are calculated from H~ and H; by the difference equations. 
The impedance is given by ( 7). In [5] it is shown that the integral 
can be taken at any radius r for a cylindrically symmetric structure. 
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Thus integrating at the tube radius gives the same result as the in
tegral on the axis. The advantage of integrating at the tube radius 
is that the integrand vanishes in the tube region. Consequently one 
needs only to perform the integral over the gap of the cavity. 

EXAMPLES 

Pillbox cavity 

Recently H.Henke published a paper [6[ in which he numerically cal
culates impedances for single pillboxes with side tubes by Fourier 
series. This was taken for comparisons showing a good agreement. 
As example a pillbox with 198 mm gap, 278 mm radius and 50 mm 
tube radius was chosen. The differences are caused by the coarseness 
of the mesh, which gets a growing influence with growing frequency. 
Thus it may be concluded that the method presented here works well 
and only the solution method for the linear system haa to be im
proved to allow finer meshes. 
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Figure 1 : Reactive impedance below cut-off computed by URMEL-I 
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Figure 2 : Impedance above cut-off computed by URMEL-I 

PETRA cavity 

ka 

ka 

In general the cavities used in accelerators have a shape differing more 
or less from a pillbox. The results of the impedance calculations for 
the PETRA cavity are presented in the following figures. The low
est TMO-mode of this cavity equals 514 MHz, the cut-off frequency 
is 1912 MHz. The comparison with results obtained by TBCI [5] 
combined with Fast Fourier Transformation (FFT) shows that TBCI 
allows only a quite rough approximation of the impedance. 
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Figure 3 : Impedance of PETRA cavity computed by URMEL-I 
(divided by 2lr) and computed by TBCI/FFT 
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Figure 4 : Reactive impedance computed by t:RMEL-I (divided by 

2lr) 

SUMMARY 

The extension of the resonator code URMEL to URMEL-I presents 
a new and efficient tool to calculate the impedance of obstacles of 
arbitrary but cylindrically symmetric shape with side tubes. The 
preliminary version of this code gives good results. indicating the 
validity of the method. 
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