RFQ LINACS WITH CONSTANT INNER APERTURE AND MODULATION
P. Junior, H. Deitinghoff, A. Harth

Institut für Angewandte Physik der Universität Frankfurt am Main, Robert-Mayer-Str. $2-4, D-6000$ Frankfurt am Main, West Germany

Abstract

RFQ's are considered, where each of the four electrodes consists of an inner continuous pipe covered with a sequence of appropriate pieces of outer pipes. The acceleration rate then varies with the length of these outer sections. As a consequence of such a simple construction pattern the buncher design principle, usually based on constant phase advances, has to be abandoned. The paper presents prototypes and discusses acceptances and beam currents.

Design Principles

In our aim of investigation RFQ setups with a construction as easy as possible, we studied four rod 1 inacs ${ }^{1}$, where each of the four rods consists of an inner continuous pipe, on which appropriate slices of outer pipes are brought. Fig. 1 show the principle. When the acceleration parameter A_{10} of the corresponding potential expansion ${ }^{2}, 3$ can only be varied with the length of the slice as a consequence of chosing uniform parameters D_{1}, D_{2} at a given distance R of optical and rod axis, the buncher cannot be developed in the usual manner ${ }^{4}{ }^{5}$. The convention is that the three quantities, namely the transverse phase advance per cell, in smooth approximation given by

$$
\begin{equation*}
\frac{\sigma_{t}^{2}}{\pi^{2}}=-\frac{e V A_{10} \sin \phi_{s}}{2 m V^{2}}+\frac{1}{2}\left[\frac{e V A_{01}}{m \omega^{2} a^{2}}\right]^{2} \tag{1}
\end{equation*}
$$

(the A_{21}-term being neglected), the longitudinal phase advance per cell

$$
\begin{equation*}
\frac{\sigma_{1}^{2}}{\pi^{2}}=\frac{e V A_{10} \sin \phi_{s}}{m V^{2}} \tag{2}
\end{equation*}
$$

as well as the longitudinal aperture (bunch length) are kept constant. This last condition relates the synchronous phase to the velocity

$$
\begin{equation*}
v^{2}\left(1-\phi_{s} c t g \phi_{s}\right)=\text { const. } \tag{3}
\end{equation*}
$$

Such a design guarantees almost perfect matching of subsequent cell acceptances both for transverse synchronous and longitudinal particles moving on the axis. The constant in (3) is given by the input velocity v as well as the starting synchronous phase ts chosen. When bunching is finished, further acceleration is accomplished with constant synchronous phase ϕ_{5}, usually 30°, and maintenance of (1) with $\sigma_{t} \xlongequal{s}$ const. is then possible. $f=\omega / 2 \pi$ stands for the radiofrequency, e/m for the specific charge of particles, protons in this study, a means the inner aperture (s. figs. 1) and v the voltage between rod neighbours. Table 1 comprehends data of this study object, which we regard as exemplary.

Performances

Comparing figs. 1 a and 1 b it seems evident that with identical diameters D_{1}, D_{2} and distance R resp. the transverse phase advance cannot be kept constant. The consequence of this inconvenience is that to some degree

Table 1

Tinput	7.5	keV	Toutput	60 keV
f	54	MHz	¢s range	$60^{\circ}-30^{\circ}$
V	10.5	kV	a	4.5 mm
R	12.4	mm		

transverse acceptances of subsequent 3λ cells do not match, although σt increases. This is shown in figs. 2, drawn acceptances being derived at observance of conditions (2) and (3). Therefore only the common area of all acceptances can be utilized for the beam and a certain loss in acceptance and beam current must be taken in account. As the longitudinal emittance of the $D C$ beam is still small at the beginning, A_{10} becomes as small as possible, i.e. the first slice should be as thin as possible. However, a finite limit of A_{10} exists and this cannot be brought down to arbitrary small values, as is the case, when the modulation is variable. In a conventionally designed linac ${ }^{\text {b }}$ e.g. Where data are the same as in table $1, A_{1}$ ranges from $0.07-0.5$ along the buncher. Our design possibilities are shown in fig. 3 , where modulation $m=2 R-D_{1} / 2 R-D_{2}$ is taken as the parameter. A constant modulation throughout the linac seems unfavourable. Small modulation at the beginning corresponds to small acceleration rates later in the linac, large modulation gi ves too large A_{10} resulting in small transverse phase advances and acceptances. Thus our study implies two modulations namely 1.6 and 1.75, cells 1-6 are equipped with 1.6 (part I), 7 - 12 with 1.75 (part II). Regarding the transition from part I to II our calculations of matching the acceptance of cell 7 to the emittance as given by the common areas of figs. 2 showed that again matching turned out optimal, when the transverse phase advances of cells 6 and 7 agreed.

Figs. 4 demonstrate this transverse matching of II to I and furthermore the figures indicate, how the acceptance of any following cell in II covers all corresponding forthcoming ones. The longitudinal behaviour is shown in fig. 5, and figs $6 \mathrm{a}, \mathrm{b}$ and 7 show the performances of acceptances, when the beam carries 2 mA corresponding to a tune depression of about 0.4 in cell no. 1 . Fig. 8 comprehends relevant data of such a linac and in fig. 9 a photo of a rod is shown.

For all determinations of relations between field harmonics A_{10}, A_{11}, A_{21} and geometric conditions $D_{1}, D_{2}, R, B \lambda$ together with iterations necessary for the design we used the procedure described in ${ }^{7}$, however, here we adapted a new $3 D$ potential code ${ }^{8}$ to RFQ proportions and installed it into our mesh net routine of ${ }^{7}$. Finally table 2 shows how this study compares to the analogue ${ }^{6}$. As a second example we used this method for the design of a 108 MHz analogue to our RFQ linac as described in ${ }^{9}$. Table 3 informs on the comparison of both.

We can conclude saying that for not too high demands in acceptance and beam current our simple setup of an RFQ linac seems suitable.

Computations were carried out at the HRZ of the university of Frankfurt.

	$\begin{gathered} \text { total } \\ \text { length } \\ {[\mathrm{cm}]} \end{gathered}$	$\begin{gathered} \text { mean } \\ \text { acc. } \\ \text { rate } \\ {[k e V / c m]} \end{gathered}$	$\frac{\sigma}{\sigma_{0}}$	$\begin{aligned} & I_{\text {beam }} \\ & {[\mathrm{mA}]} \end{aligned}$	zero current transverse acceptance [$\pi \mathrm{mm} \mathrm{mrad}$]

 kyo 1984. Vol. 125, p. 206
5 P. Junior, Part. Acc., Vol. 13, 3,4 (1983) p. 231

6 P. Leipe et al., this conference
7 P. Junior et ai., Proc. 1985 Part. Acc. Conf. Vancouver, IEEE Trans. Nucl. Sci., Vol. NS-32, 5 (1985) p. 3249
8 R. Juergens, Nucl. Instr. Meth., Vol. 187 (1981) p. 263

9 A. Schemppet al., Proc. 1983 Part. Acc. Conf. Santa Fe, IEEE Trans. Nucl. Sci., Vol. NS-30, 4 (1983) p. 3536

Fig. la Scheme of Buncher Cell

Fig. Ib Scheme of Accelerator Cell
Fig. 2a X - X^{\prime} - Acceptances of Buncher Cells 1 - 6

Fig. 2b Y - Y^{\prime} - Acceptances of Buncher Cells 1 - 6

Fig. 3 Range of Acceleration Rate A_{10} versus normalized Aperture at different Modulation

Fig. $4 a \quad X-X '$ - Acceptances of Part II and common Area taken from Fig. 2a

Fig. 4b Y - Y^{\prime} - Acceptances of Part II and common Area taken from Fig. 2b

Fig. 5 Longitudinal Acceptances of Parts I and II

Fig. 6a Common Area of Part I in Acceptances of Part II at $2 \mathrm{~mA}\left(X-X^{\prime}-P l a n e\right)$

Fig. 6b Common Area of. Part I in Acceptances of Part II at $2 \mathrm{~mA}\left(Y-Y^{\prime}-P l a n e\right)$

Fig. 7 Longitudinal Acceptances of Parts I and II at 2 mA

Fig. 8 Relevant Data of LINAC

Fig. 9 Photo of ROD

