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Summary 

We combine the ideas of kinetic energy equipar
titioning and nonlinear field energy to obtain a quan
titative description for rms emittance changes induced 
in intense beams with two degrees of freedom. We de
rive equations for emittance change in each plane for 
continuous elliptical beams and axially symmetric 
bunched beams, with arbitrary initial charge distri
butions within a constant focusing channel. The com
plex details of the mechanisms leading to kinetic 
energy transfer are not necessary to obtain the 
formulas. The resulting emittance growth equations 
contain two separate terms: the first describes emit
tance changes associated with the transfer of energy 
between the two planes; the second describes emittance 
growth associated with the transfer of nonlinear field 
energy into kinetic energy as the charge distribution 
changes. 

Introduction 

Recently, we presented a differential equation 1 ,2 

for continuous round beams with continuous linear 
focusing (a smoothed representation of a real trans
port line), which expresses a relationship between 
the rate of change of rms emittance and the rate of 
change of the nonlinear field energy. The nonlinear 
field energy is the residual field energy possessed 
by beams with nonuniform charge distributions. It 
depends only on the shape of the charge distribution 
and corresponds to the field energy available for 
emittance growth. Using approximations valid for a 
space-charge-dominated beam, namely constant rms beam 
size and homogenization (uniformity) of the final 
charge density, the integrated differential equation 
yields an expression for emittance growth that agrees 
well with the numerical simu1ations. 1 ,2 The emittance 
growth formula also agrees with a formula proposed 
ear1ier3 to explain numerical simulation results for 
a quadrupole transport channel. Equivalent forms of 
the emittance and field-energy differential relation 
had been discovered ear1ier,4,5 but it appears that 
the utility of this result for obtaining a better 
understanding of emittance growth effects in 1inacs 
and transport systems had not been recognized. Exper
imental evidence for the importance of the emittance
growth equation for unneutra1ized beams in a real 
quadrupole transport channel has also been reported. 6 ,7 

For the round symmetric beam, a single emittance
growth mechanism was isolated, characterized by a 
rapid charge-density redistribution, as the charged 
beam particles, behaving like a plasma, adjust their 
positions to shield the external field from the inte
rior of the beam. For linear focusing, this implies 
a uniform charge density to produce the required lin
ear space-charge field for exact shielding of beams 
in the extreme space-charge (zero-emittance) limit. 
In general, this is an approximation because finite 
emittance beams tend toward a matched charge density 
with a central uniform core and a finite thickness 
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boundary, roughly equal to the Debye length. The rms 
emittance growth itself arises from the nonlinear 
space-charge fields, when the beam charge density is 
nonuniform. The basic relationship between field 
energy and rms emittance is not restricted to a round 
continuous beam. The relationship for a 1-0 sheet 
beam was derived ear1ier-,' and, more recently, one of 
us (I. H.) has generalized the differential equation 
to include asymmetric continuous (elliptical) beams 
and bunched beams in free space. 10 This new result 
allows us to derive more general formulas for space
charge-induced emittance growth that include (1) the 
charge density redistribution and (2) kinetic energy 
exchange between different degrees of freedom. 

The suggestion of emittance growth associated 
with kinetic energy exchange was made many years ago 
to explain the numerical stUdies for the CERN and 
Brookhaven linac injectors. 11 - 14 The law of equipar
tition of energy was invoked, which asserts that in 
thermal equilibrium, the same average kinetic energy 
is associated with each degree of freedom. But fur
ther study was required to establish this principle 
in a charged-particle accelerator, where collective 
fields dominate over particle collisions. More recent 
numerical simulation studies of high-current asymmet
ric continuous beams 15 ,16 and bunched 1inear
accelerator beams 17- 1 ' reaffirmed the importance of 
the kinetic-energy exchange mechanism. Detailed anal
ysis of the K-V distribution for 2-D asymmetric 
beams 15 ,16 resulted in a prediction of coherent-mode 
instability thresholds for asymmetric beams, which 
established a collective field mechanism for kinetic
energy exchange. The predicted threshold values even 
agreed closely with numerical simulation results for 
bunched beams. 1,,20 Simulation stUdies clearly showed 
that equipartitioning does occur when the space-charge 
forces become large. 2o However, theoretical predic
tions for the magnitude of the emittance growth from 
equipartitioning were still not obtainable. 

In this paper, we use the general equation relat
ing field energy and rms emittance to derive equations 
for emittance growth for rms-matched beams with con
tinuous linear focusing, which include both the charge 
density redistribution and the kinetic-energy exchange 
mechanisms. These equations contain two final-state 
parameters: the final nonlinear field energy and the 
final value or a new quantity called the partition 
parameter. We discuss the characteristics of these 
final-state parameters deduced from our numerical sim
ulation studies. We invoke two hypotheses, observed 
from simulation studies to approximately characterize 
the final state for space-charge-dominated beams: 
(1) homogenization (charge-density uniformity) and 
(2) equipartitioning. For intense beams, these 
hypotheses allow us to obtain values for the two 
final-state parameters and equations for emittance 
growth that depend only on the initial beam proper
ties. We present equations for both 2-D continuous 
beams and axially symmetric bunched beams. We present 
details of the numerical simulation results for the 
2-D asymmetric beams in an accompanying paper21 at 
this conference. The equations will apply to beams 
in free space, or beams within a conducting pipe whose 
radius is much larger than the beam size. The effects 
of image changes in smaller pipes will require further 
study. 
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2-D Continuous Beams 

Emittance Growth 
For a general 2-D continuous beam, the relation

ship between field energy and rms emittance, exact 
for an elliptical beam with an arbitrary charge dis
tribution in free space, can be written as 10 

2 2 
L de x + L ~ = _ K dUn 
x2 ds y2 ds ds 

(1 ) 

where s is the distance along the beam axis, and the 
parameters X and Yare the total semiaxes of the 
equivalent-uniform beam (uniform beam with the same 
rms sizes as the actual beam), related to the rms beam 
. Fz j2R '2 s lZes ..; x ~ and y by X = 2 ..; x ~ and Y = 2 j Y 

For nonelliptical beams, Eq. (1) is an approximation 
that can be tested by numerical studies. The quan
tity K is the generalized perveance given in terms of 
charge e, mass m, number of beam particles per unit 
length Nt, velocity v, relativistic mass factor y, 
and free-space permittivity eo by K = eZNt /Z.cOmv Zy3, 
and the actual beam current I is given by I = Nt ev. 
The quantity Un = U/wO is the normalized nonlinear 
field energy, where U is the difference between the 
self-electric field energies per unit length of the 
actual beam and the equivalent uniform beam, and the 
quantity wO = (eNt)Z/1&.eO is a field energy per unit 
length normalization parameter. Both the e1ectric
and magnetic-field contributions are contained in 
Eq. (1) by including the factor y3 in the definition 
of K (y2 accounts for the magnetic field and y accounts 
for the relativistic mass). We have learned from our 
numerical studies 21 that Un is independent of X and 
Y, independent of beam current, and has a unique value 
for a given charge-density profile that is a measure 
of the charge-density nonuniformity. The minimum 
value of Un is Un = 0 for a uniform beam. Values of 
Un for some common charge distributions in Table I 
and in Refs. 1 and 2 illustrate these properties. The 
rms emittance, ex' in Eq. (1) is defined by 

where the beam divergence x' is related to the 
x-velocity component x by x = vx', and similar 
definitions apply for the y-plane. 

TABLE I 
Un FOR SOME COMMON 2-D DISTRIBUTIONS 

Distribution Charge density 

Gaussian exp(-lI2X - i l2y ) 

Parabo 1 i c (waterbag) 22 0 22 0 
1 - x Ixo - y Iyo 

Uniform (K-V and thermal) 1 

Hollow /IX; 
2 2 

+ Y Iyo 

( 2) 

0.154 

0.0224 
0.000 

0.0754 

We assume that a beam, with arbitrary initial 
charge density profile and arbitrary kinetic energies 
in the x- and y-planes, is injected into a linear 
continuous focusing channel and transforms from an 
initial to a final rms matched state. We allow for 
unequal kinetic energies and unequal focusing in the 
x- and y-p1anes. We will assume that the rms beam 
sizes are assumed to remain constant as the beam 
propagates, a good approximation for rms-matched, 

space-charge-dominated beams with linear continuous 
focusing, as we have learned from numerical simulation 
work. 21 Then we can integrate Eq. (1) and obtain 

2 2 
Ae x + ~ = 
x2 y2 - KAU n 

Equation 3 is the basis for the emittance-growth 
equations that we will derive. 

For an rms matched beam, we can write ex = 
XX' and ey = YY', where X' and Y' are related to _ - r== 

rms beam diVergencesV andj? by X' = 2Jx,2 

( 3) 

and Y' = 2y1y,2. It is convenient to introduce a new 
parameter P that we call the partition parameter, 
defined by 

P = X,2/y,2 (4) 

When the transverse motion is nonrelativistic, the 
quantity P is a measure of the kinetic-energy asymme
try. Using the partition parameter, we can re-express 
Eq. (3) in the two forms that give emittance-growth 
equations in each plane. We obtain 

ll/2 
I :,f, [1 - (Pi - Pf ) Pf Kx2 

£xi Pi{l + Pf ) ( 1 + Pf ) 2 (U nf - Uni ) J' (5) 
£xi 

and 
1/2 

" [ (Pi - P,) Ky2 
-Uoj ) J (6) ...:J.I.. = 1 + (U nf £yi (1 + Pf ) ( 1 + Pf ) 2 

£yi 

where the subscripts i and f refer to the initial and 
final states. It is convenient to rewrite Eqs. (5) . 
and (&) using the results 22 

and 

where the fun~tion G2(X/Y) is defined as 

G2(X/Y) = t'(l + X/Y) 

(7) 

( 8) 

(9 ) 

The quantities kyi and kay are the initial betatron 
wave number (tune) of the equivalent uniform beam (in
cluding space charge), and the zero-current betatron 
wave number, respectively. for the y-p1ane. The beta
tron tune ratio in the x-plane can be easily expressed 
in terms of the y-p1ane rati0 22 and could equally well 
have been used instead. These betatron wave numbers 
measure the effectiveness of the focusing with and 
without space charge and as beam intensity increases, 
kyi/kOy decreases. The relationship between the tune
depression ratio kyi/kOy and the beam and channel 
parameters K, £x' £Y' kOx, and kOy, is algebraically 
complicated and is most easily obtained numerically, 
but near the space-charge limit, a simple result is 22 

(10) 
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We can also write Pi = (£x/£y)2/(X/y)2, where X/Y ; 

k~y/k~X' for a space-charge-dominated beam. Substitu
tion of Eqs. (7) and (8) into Eqs. (S) and (0) yields 

(11 ) 

and 

(12 ) 

Equations (11) and (12) express the emittance-growth 
ratios in terms of the initial beam variables X/Y, 
Pi, kyi/kOy' and Uni and two final-state variables 
Pf and Unf. The equations contain two growth (or 
decay) terms: one that depends on the change in the 
partition parameter P and the other that depends on 
the change in nonlinear field energy Un' For the 
case of a round symmetric beam, where X = Y and Pf = 
Pi = 1, these equations reduce to the results already 
presented in Refs. 1 and 2. 

The values of the final-state parameters must be 
determined either from additional theory or from 
numerical simulation. At present, we have the numer
ical simulation results available to US. 21 From these 
studies using different initial distributions, we 
conclude that the charge-density redistribution is 
very rapid, and after only a few plasma periods, the 
beam density, ignoring a low-density halo, is nearly 
uniform (Unf ~ 0) when the beam intensity is high 
enough that the charge-density redistribution effect 
causes significant emittance growth. 

Kinetic energy exchange is a slower process than 
the charge density redistribution and can typically, 
take tens of plasma periods. For the following dis
cussion, we will assume that Pi> 1. The final par
tition parameter, Pf, depends strongly on kyi/kOy. 
For reasonable propagation distances, we can identify 
three distinct regions: (1) a stable region, where P 
does not change (tune depressions above approximately 
kyi/kOy Z O.S to 0.0 for most initial distributions); 
(2) a transition region with partial or incomplete 
equipartitioning, where 1 < Pf < Pi (kyi/kOY below 
the tune depression threshold); and (3) full equipar
titioning, where Pf = 1 for sufficiently low tune 
depressions. As the beam propagates further, Pf ~ 1 
throughout the transition region, and the curve of Pf 
versus kyi/kOy approaches a step function. 

If we assume that for the highest beam intensi
ties the final beam charge density is uniform or 
homogenized (Unf = 0) and that the final kinetic 
energy is equipartitioned (Pf = 1), we obtain 

£xf [ (Pi - 1) G2(X/Y) (~ ) ] 1/2 
- = 1 - 2P + 2P 2 - 1 U. , (13) 
£xi i i k. n1 

Y1 

and 

£ f [ (Pi - 1) G2 ( X/Y) (~ ) ]112 
...::J..!..= 1 +-'-::---+ 2 2 -1 U. 
£yi 2 k . n1 

Y1 

(14 ) 

Recent experimental studies 6 show evidence that 
kinetic-energy exchange effects do lead to emittance 
growth in real unneutralized 2-0 asymmetric beams with 
quadrupole focusing. 

Minimum Final Emittance 
A general result for a m1n1mum final emittance 

can be derived. This is most easily done by returning 
to Eqs. (S) and (0) and using the ~esults,22 near2the 
extreme space-charge limit, that X = 2K(k

2y
/kox ) I 

(k6x + k6y) and y2 = 2K(kox/kOy)2/(k6x + kOY)' 
Then, using the same assumptions of final-state homog
enization and equipartitioning, we obtain 

(1 + Pi) 2 
2 2 (kO/kOx ) 

K2U . £xf £xi 2P i 
+ 

k2 k2 n1 
Ox + Oy 

and 

+ P.) 2 
2 2 ( 1 

1 + 
(kOx/kO~) 

K2U . £yf £yi 2 2 2 n1 
kOx + kOY 

The m1n1mum final emittances correspond to initial 
emittances £xi = £yi = 0 (the extreme space-charge 
limit). Then we obtain 

and 

£yf,min = 

kO/kOx 112 
K U . . n1 

( 1 S) 

(10) 

(17) 

(18) 

Equations (17) and (18) predict that the mln1mum 
final emittance depends on the initial nonlinear 
field energy Uni' but not on the initial partition 
parameter Pi. The minimum final emittances are line
arly proportional to beam current through the parame
ter K. The nUmerical simulation results for a round 
symmetric beam1,2 have shown excellent agreement with 
Eqs. (lS) and (10), and supporting experimental evi
dence has also been reported 6 for unneutralized beams 
in quadrupole focusing cha~nels. 

Scaling With 8eam and Channel Parameters 
Using the pair of matched rms envelope equations 

for the x- and y-planes, and the definitions of the 
equivalent, uniform beam tunes kx and ky, it is 
straightforward to show that the three variables (P, 
X/Y, and ky/kOy that determine the emittance growth) 
can be expressed as functions of three new dimension
less variables that depend directly on the beam and 
channel parameters K, £x' £y, kOx and kOy. 22 These 
three new variables consist of two current-dependent 
parameters, u = K/2£ kO and u = K/2£ kO ' and the x x x y y y 
zero-current beam-aspect ratio Xo/Y o = (£xkOy/£ykOx)1/2. 
Thus, for a given initial charge-density profile, con
stant values of ux' uY' and Xo/Yo should produce the 
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same emittance growth from charge-density redistribu
tion and kinetic-energy exchange. We note that the 
ratios I/&x and I/&y enter into Ux and Uy to de
termine the emittance growth. 

Axially Symmetric Bunched Beams 

Emittance Growth 
For an axial4--symmetric bunch.i.!!.. free space with 

rms semi axes a =/;2 =~ and b = vi2 in the labora
tory frame, we write the differential relation between 
the field energy and rms-emittance for an arbitrary 
charge-density profile as 10 

(19 ) 

where W is the space-charge electric-field energy of 
the bunch, and Wu is the same quantity for the equi
valent, uniform ellipsoidal bunch. Equation (19) is 
exact only for a uniform ellipsoid, and is an approx
imation for other cases. In Eq. (19), complete sym
metry is assumed for the transverse x- and y-planes. 
The quantity N is the number of beam particles in the 
bunch, and the emittance definitions are as given by 
Eq. (2) with the effective z-plane divergence given 
by z' = (Z - v)/v, where Z is the laboratory velocity 
component of each particle along the beam axis, and v 
is the velocity of the center of mass of the bunch. 
We assume that a beam bunch is injected into a channel 
with linear continuous focusing in all three planes 
with equal focusing in x and y (a smoothed represen
tation of a well-bunched beam in a linac). We allow 
for unequal kinetic energies and unequal focusing in 
the transverse and longitudinal planes, where the 
longitudinal kinetic energy is defined in the rest 
frame of the bunch. The beam bunch is assumed to 
transform from an initial to a final state, and as in 
the 2-D case, the rms beam sizes are assumed to remain 
constant as the beam propagates, a good approximation 
for space-charge-dominated beams with linear continu
ous focusing. Integrating Eq. (19), we obtain 

2 2 26& 6& 16K3 -..::i. + _z = -- G (b/a)6U (20) 
a2 b2 bon 

where K3 is a perveance-like parameter with dimen
sions of length given by 

Ne 2 
(21 ) 

The average beam current for a string of bunches in 
an rf linac with one bunch per rf period is given by 
I = Nec/~, where c is the speed of light, and ~ is 
the rf wavelength. The function Go(b/a) is given by 

Go (b/a) = (1 - M) + M(b/a)2 (22 ) 

where M is the ellipsoid form factor,23 which is 
approximately M = 1/(3 b/a) for a nearly spherical 
bunch and is M = 1/3 for an exactly spherical bunch. 
The quant i ty Un = (W - Wu) /w3 is the norma 1 i zed non-' 
linear field energy, where we have chosen to 
normalize to w3 given by 

(Ne)2 Go (b/a) 
w = 

3 4o&cob 

For a spherical bunch w3 equals the space-charge 
electric-field energy within an equivalent uniform 
bunch. 

( 23) 

In Table II, we show values of Un calculated for a 
spherical bunch for some common distributions. For a 
spherical bunch, we find that Un depends only on the 
shape of the charge distribution and is independent 
of rms beam size and beam current; also, Un is a meas
ure of charge-density nonuniformity, having a minimum 
value of zero for a uniform bunch. Additional work 
will be required to determine whether this choice of 
normalization results in a dimensionless nonlinear 
field energy that is a function only of the charge
density profile in the general ellipsoidal case, inde
pendent of the beam semi axes a and b. 

TABLE II 

Un FOR COMMON SPHERICAL BUNCH DISTRIBUTIONS 

Distribution Charge density Un 

Gaussian 2 2 exp(-r /20 ) 0.308 

Parabo 1 i c _ r2/R2 0.0368 

Uniform 0.00 

Again, we introduce the partition parameter P, 
defined by 

P = b,2/a ,: where b' =~ and a' =~ (24) 

In the nonrelativistic limit, which is the case of 
most interest P is a measure of the kinetic energy 
asymmetry between the longitudinal and transverse 
planes in the bunch rest frame. Using the partition 
parameter, we can re-express EQ. (20) to give emit
tance growth equations in each plane. The results 
are 

(25 ) 

(

k2) 1 
G(b/a) ~ - 1 (U nf - Uni ) I 

y1 J 

1/2 

and 

~= [1 , (Pi - Pf ) 
(26) & , (2 + Pf ) y1 

(" ) l 
112 

1 .Jrl. 
(2 + P

f
) G(b/a) k~i - 1 (U nf - U ,) J n1 

where the subscripts i and f refer to the initial and 
final states. The function G(b/a) is defined by 

G(b/a) = 2Go(b/a)/3(1 - M) (27) 

and the quantities KYi and kOy are the initial beta
tron wave number of the equivalent uniform beam with 
space charge and the zero-current betatron wave num
ber, respectively, for the y-plane. The initial tune
depression ratio kZi/kzO can be expressed 24 as a func
tion of k ./kO ' P., and b/a. An approximate rela-Y1 y 1 
tionship for the tune-depression ratio k i/kO ' with 
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respect to the parameters of the beam and channel 
valid near the extreme space-charge limit, is24 

~ _ ~ (k6~V/3 (1 + 2:6/k6z\ 4/3 (2B) 
kay - 4kOY K3; ") 

2 2 We can also write Pi = (czi/Cyi) I(b/a) , where bla 

(1 + 2k~y/k~z)/3 for a space-charge-dominated beam. 
As in the 2-0 case, if we assume that for high beam 
intensities the beam approaches final-state homogeni
zation (Unf = 0) and kinetic-energy equipartitioning 
(Pf = 1 nonrelativistically), we obtain emittance
growth equations given by 

~ = l-l - £ (Pi - 1) G(b/a) (~ _ 1) U .]1/2 (29) 
czi 3 Pi + 3Pi k2. nl' 

yl 

and 

r 
2] 1/2 .:n = 1 + (Pi - 1) + G( b/a) (~ _ 1) U . 

£ • 3 3 k2 nl 
Y1 L yi 

. (30) 

Numerical simulation studies for the case of spherical 
bunches with different charge density distributions 9 

have shown good agreement with Eqs. (29) and (30). 
The above emittance-growth equations for nonspherical 
bunches have not yet been tested by numerical simula
tion. 

Minimum Final Emittance 
The assumptions of final-state homogenization and 

equipartitioning near the extreme space-charge limit 
result in . 

2 2 (2 + Pi) ,,, (bl.) (' ')213 + z __ 3 __ 
Uni czf C zi 3P i 3 koz 

(31 ) 

and 

( ')'" 2 2 (2 + Pi) l6Gy(b/a) ~ 
cyf cyi 3 + 3 kay Uni (32) 

where Gy(b/al = Go[3(1 - M)/2(b/a)4]1/3 and Gz(b/a) = 
Go[3(b/a)2M]1/3. The minimum final emittance occurs 
when the initial emittances are Cyi = czi = a (extreme 
space-charge limit), wh)ch results in 

(33) 

and 

£ = yf ,min 
4 (~ \ 1/2 (K/)l /3 U ~ /2 

3; kay n1 
( 34) 

Equations (33) and (34) depend on the initial nonlin
ear field energy Uni' but are independent of Pi, a 
conclusion that was found also for the 2-0 problem. 
For the bunched-beam problem, the minimum final emit
tances are proportional to 12/3 , through the parameter 
K30 This is in contrast to the linear dependence 
obtained for the 2-0 continuous beam. The 12/3 pre
diction agrees well with numerical simulation studies 

for a spherical bunch.9 The only linac experimental 
results of which we are aware~~ are unpublished, and 
the reported result is that the measured scaling of 
minimum final emittance is in the range of 11/3 to 
11/2. If these results are confirmed, they suggest 
that other emittance-growth mechanisms may also con
tribute significantly in real linacs. 

Scaling With Beam and Channel Parameters 
From the matched envelope equations for the 

bunched beam and the definitions of the equivalent 
uniform bunch tunes ky and kz' we can show24 tha~ the 
three variables (P, b7a, and ky/kOy) that dete~lne 
the emittance growth can be expressed as functlons of 
three new variables that depend directly on the beam 
and channel parameters K3' cy• cZ' kay' and kO z ' The 
three new variables are u , u • and b lao. where 

1 /2 1 /2 Y z 1 12 0 I 12 
uy = 4K3kOz /cyc Z kO ' Uz = 4K3kOY IcZc y kOz ' and 
bolao = (czkoy/cykoz)1/2. Then, constant values of 
Uy. uz, and bolao should yield the same emittance 
growth ratios for a given initial charge-density pro
file assuming that no other sources of emittance 
growt9/~re present'/2For bun~hed beams, the ratios 
I/c C and I/c center 1nto u and Uz and . yz zy y 
determine the emittance growth, in contrast to the I/c 
ratios that enter for 2-0 beams. For spherical 
bunches, this implies that the emittance growth de
pends on 1/£3/2. We have found excellent agreement 
of this scaling rule in our numerical simulation stud
ies for spherical bunches. 9 

Conclusions 

We have presented equations for 2-0 continuous 
beams and axially symmetric bunched beams with linear 
continuous focusing in free space that predict space
charge-induced emittance growth associated with two 
mechanisms: (1) charge-density redistribution and 
(2) kinetic-energy exchange. We have used the rela
tion between field energy and rms emittance to obtain 
results, which have been expressed in terms of both 
the initial beam variables, and two dimensionless 
final-state variables: (1) the final, normalized, 
nonlinear field energy Unf' a measure of the final 
charge-density nonuniformity and (2) the final parti
tion parameter Pf, a measure of the final kinetic 
energy asymmetry. 

In the absence of additional theory to predict 
these final variables from a given initial state, we 
have used numerical simUlation studies to characterize 
the final beam. Thus far, we have done numerical 
studies for 2-0 continuous beams , ,2,2' and spherical 
bunched beams. 9 We find that the assumption of a 
final, uniform charge density (Unf = a), which, ne
glecting beam-halo contributionsi is expected in the 
extreme space-charge limit, leads to a good first 
approximation for the rapid charge-density redistri
bution component of emittance growth. For 2-0 beams, 
a general characterization of the final partition pa
rameter, which determines the usually slower. kinetic
energy exchange process, is more complicated. When 
Pi > 1, three regions of initial tune depression are 
identified: (1) a stable region at high initial tune 
depression, kyi/kOy ~ 0.5 to 0.6, where P is un
changed, (2) a transition region, where Pf has 
approached equipartitioning. 1 < Pf < Pi, and (3) a 
fully equipartitioned region, where Pf = 1. As the 
beam propagates further, Pf approaches unity through
out the transition region. Therefore, final equipar
titioning of the beam is observed within a range of 
initial tune depressions that begins at kyi/kO = 0, 
and approaches a stability threshold near kyi/kOY = 
005 to 0.6 with increased distance of beam propagation. 

In addition to the emittance-growth equations, 
we have derived formulas for minimum final emittances 
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corresponding to an extreme space-charge limit, when 
£i = O. We predict that the minimum final emit
tances should vary with beam current as £f . ~ I ,mln 
for 2-D continuous beams, and as £f min ~ 12/3 for 
bunched beams. ' 

Finally, we have shown how space-charge-induced 
emittance growth scales with the beam and channel 
parameters through two dimensionless current-dependent 
parameters and the aspect ratio of the zero-current 
beam. We predict that emittance growth depends on 
1/£ and 1/£ for 2-D continuous beams and on 

x y 
I/£y£t/2 and I/£z£~/2 for bunched beams. Experimental 
eviaence for emittance growth from charge redistribu
tion of unneutra1ized beams in real quadrupole trans
port channels has been reported. 6 ,7 Further studies 
will be needed for real quadrupole systems before we 
can evaluate the utility of these predictions for 
improved high-current beam transport and accelerator 
design. 
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