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Abstract: Linear accelerators for colliders and for free-electron 
lasers require beams with both high brightness and low emittance. 
Their transport and acceleration is limited by single-particle effects 
originat ing from injection jitter, from the unavoidable position jitter 
of components, and from chromaticity. Collective phenomena, 
essentially due to wake fields acting within the bunch, are most severe 
in the case of hIgh-frequency structures, i.e. a small aperture . Whilst , 
in the past, the transverse wake-field effects were believed to be most 
serious, we know that they can even be beneficial when inducing a 
corresponding spread in betatron oscillation either by an energy 
spread along the bunch or by an RF focusing system acting on the 
bunch scale. This paper evaluates the di fferent effects by simple 
analytical means after making use o f the smooth focusing 
approximation and the two-particle model. Num erical simulation 
results are used for verification. 

I. Introduction 

A linea r accelerator consists of an inj ector, a da mping ring, and a 
main linac. Since the longitudinal bunching motio n ceases with')' - ) 
and the transverse forces decrease proportiona lly to ')' - 2 , electron 
injectors are normally simple and short. On the other hand, the beams 
of high brillia nce needed for linear colliders o r free-electron laser 
(FEL) drivers require special care in order to minimize transport 
aberrations and RF dynamic effects and to counteract space-charge 
and beam-induced fields. Many papers treat these subjects, and today 
there is good hope that RF laser guns I and progress in damping rings I 
will make it possi ble to supply beams of the required quality. 

In the main linac we will have then to accelerate the beam to its 
final energy while prese rving its emittance. For both linear colliders 
and FEL dri vers the typ ical range of beam parameters is simila r: 
10"-10 10 electrons per bunch, - 0.1 mm r.m .s. bunch length , 
- 10- 6 m normalized emittance, < 0.5070 energy spread . 

Nevertheless, the requirements for emitta nce preservation will be 
very different for the two machines . Linear colliders a re extremely 
long . They will have a high RF frequency, 10 to 30 GHz, and will 
probably be single-bunch machines; FEL drivers are much shorter , 
have a lower RF frequency, 0.3 to 3 GHz, but have many bunches. 
Therefore, single-pa rticle effects which are governed by the law of 
large numbers are more severe in the case of colliders. The same is true 
for the single-bunch tra nsverse beam break-up (SBBU). It is caused by 
transverse beam-induced fields (wake fields) which scale with the third 
power of the RF frequency and whose effects depend strongly on the 
machine length . On the other hand, FEL drivers are subject to the 
weaker but cumulative multibunch beam break -up (MBBU). It is a 
co herem effect where the transverse EM I I mode, excited by the 
leading bunches, de flects the following bunches. The effect is well 
known and will not be treated here . References can be found in a 
recent paper2 whi ch studies different so lutions to reduce the blow-up. 

In thi s pa per we investigate the most importa nt single-particle and 
collective effec ts and possible cures. Much of the basic particle 
dynamics, the external focusing requirements, and the transverse 
perturbing effec ts a re taken from Helm a nd Miller. ) The presentation 
of wake fie ld s a nd the two-particle model follows close ly the work of 
Bane" and for the single-particle effect s that of Ruth. 5 All numerical 
result s refer to a hypothetical I + I TeV co llider , the CERN Linear 
Collider (C Ll C), which is under study at CERN." The parameters 
used here are given in Ta ble I. 

Table I 
CLiC Parameters used in this Paper 

Energy range 
Accelerating gradient 
Total length 
RF frequency 
RF structure length , aperture 
Number of pa rticles per bunch 
r.m.s . bunch length 
Transverse wake-field slope 

at bunch centre 
La ttice: 

Eo = 5 GeV to Er =. I TeV 
Ea = 80 MV/ m 
L = 12 .5 km 
fR F = 29 GHz 
e RF = 0 .25 m , 2a = 4 mm 
N, = 5 X 109 

'h = 0 .2 mm 

W: = 1.69 x 1021 V / C-m ) 

fJ. = 90° , FODO 
eq , f, '" ')' 112 

En, = 10 - " rad . m 
A~o = 5 m to A~r = 70.7 m 

magnet and cell length 
Norma li zed emittance 
Betatron wavelength 
Beam size 
Focal length 

0 , 0 = 8.9 fJ.m to O,r = 2.4 fJ.m 
fo = 0.44 m to fr = 6.25 m 

Tota l phase advance 
Number of quadrupoles 

fJ. r = 2220 rad 
Nq = 2828 

2. Single-Particle Effects 

2.1 Equation of Motion 
We assume uncoupled x- and y-motio n a nd a betatron wavelength 

much sma ller than the distance needed to do uble the energy. The 
accelera tion is then adiabatic and the tra nsverse equation of motion 
becomes 

x"(s) + ~ K(s)x(s) = -~ Q- '(s) , 
p p 

(2 . 1) 

where x is the transverse di splacement of a pa rticle a t position s along 
the acce lerator, p and PI) are the actual and the design momentum 
respectively, K(s) is the focu sing function, and Q(s) - I the loca l 
curvature due to a ll other but focu sing fields. In contrast to circular 
machines, the dispersion increases with s in a linac. It is therefore 
useful to split the so lution of Eq. (2 . 1) into a reference trajectory x" 
with x,(O) = x,'(O) = 0, and the bet atron oscillation XJ which is 
determined by the initial condition s xo, XI;' and K(s), onl y. 
Furthermore , it is sufficient, in most cases , to smooth the focusing 
system while keeping the local field errors Q(s) discret e. Writing 

p = Po(l + b) , b~1 

we obtain then 

x;: + k2(l - ~b) - l X , = ( I + b) - IQ - '(S) 

x ~ + k 2(l - ~b) - I XJj = O. 

(2 .2) 

(2.3) 

(2.4) 

The wave number k 27r/ AJj a nd the chromaticity 
~ = (Ak / k) / (AE/ E) are the same as fo r AG focu sing. Having solved 
Eq s. (2.3) and (2.4) we take the acceleration into account by an 
adiabatic damping term and th e AG foc using by reintroducing the 
betatron function 

Xes) -> l {1(s) ')'(Si)] 1/ 2 x(s) , 
{1(Si) ')'(s) 

(2.5) 

where Si is th e position of initial conditions. Nevertheless, the smooth 
focusing approximation oversimplifies the problem concerning several 
points7 

- the machine ellipse stays constant a nd beams are a lways mat ched; 
- all particles, independent of the phase advance, are stable; 
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- RF structures are continuous; therefore, accelerating-gradient and 
wake fields have to be scaled down (seems to be a small effect); 

- transverse positioning errors depend on the average i3-function and 
have a weaker influence (quite important, can give an order of 
magnitude difference in beam blow-up). 

2.2 Injection Jitter 
In principle, all static errors or slowly varying errors, with respect 

to the repetition rate, can be corrected either by realignment or 
feedback . Those errors which occur too fast for a feedback are 
assumed to be random and called jitter. 

Let us consider a position jitter tox at injection in an otherwise 
constant machine . Then, to keep the bunches in position at the end of 
the machine , the jitter must be small compared to the beam size at the 
beginning 

O.o.x ~ Oxo, (2.6) 

or, in other words, the jitter in the injection slope must be small 
compared to the divergence of the beam 

(2.7) 

That means, for the CUC example, that position and slope jitter at 
injection must be smaller than 9 /1m and II /1rad respectively. 

2.3 Lateral-Displacement Jitter of Quadrupoles 
A laterally displaced quadrupole acts like a well-aligned 

quadrupole plus a dipole magnet. The transverse kick of the dipole 
field can be simulated with a local curvature of 

Q(s) - I = (tox;/ fi)5(s - Si) , (2.8) 

where f; and toXi are the focal length and the displacement of the 
quadrupole at position s = Si and 5(s) is the Dirac 5-function. Then the 
reference trajectory, Eq. (2.3) and 5 = 0 together with Eqs. (2.8) and 
(2.5), becomes 

tox ' [i3(S) y(S )] 1/2 Xi(S) = - ' i3(S i) -- --' sin /1(S,Si) H(s - Si) 
fi . i3(s;) y(s) 

(2.9) 

with 

/1(S,Si) = .\ ds ' li3(s ' ) phase advance bet ween Si and s 

" 
H(s - Si) Heaviside step function. 

Let us now consider a lattice of constant phase advance per cell as for 
the CUC study, Table I. In such a lattice, magnet and cell length, and 
therefore also f and 13, scale with 1" /2. Assuming all NQ quadrupoles in 
the machine to be displaced we simply add up the trajectories (2.9) and 
obtain at s = L 

N 

x(L) = 130 ~ A [ ( )1 ]1 /4 . (L ) L.J ,-,Xi I' Si Yf S1I1 /1 ,Si . 
fo i = I 

(2.10) 

The subscript 0 refers to the beginning of the machine. If the 
displacements toXi are random with a normal distribution we can apply 
the 'central limiting theorem' and obtain the r.m.s. value of the 
trajectory 

ax = f!!!. aJox l b [y(si) /y rl I / 2 sin 2 /1(L,Si)] 1/ 2 
fo i 

which, after replacing the sum by an integral and assuming a linear 
increase of y(s) = 1'0(1 + Gs), becomes 

130 ,.-;--;;. 
ax = -f v NQ /3 aJox. 

o 
(2 . 11 ) 

I f we do not want emittance dilution, the reference trajectory must be 
sma ll compared to the beam size at the end of the linac . This yields a 
limit to the tolerable magnet displacement jitter of 

fo ~ 
aJox <"; 7.) v 3/ N" a , f . 

/JO 
(2 .12) 

Equation (2.12) requires the jitter to be smaller than (1.O43 /1m for 
CUe. 

2.4 Tilt Jitter of RF Sections 
An RF section with asymmetric power couplers, or with a 

symmetry error in construction, or which is tilted in the axial 
direction, gives a transverse kick to the beam. As an example we 
consider a section at position s = Si which is tilted by an angle ai. The 
local curvature is 

Q(s)- I = ai[toy/Y(Si)]5(s - Si) , (2.13) 

with toy being the energy gain in the section. Now , we can determine 
the reference trajectory in the same way as in the previous section and 
obtain at the end of the machine with NRF sections: 

NRF 

x(L) = toyi30(YOYf)- 1/2 b ai[Yf/ y(s.)] 1/ 4 sin /1(L ,s i) , 
i = I 

with an r.m.s. value of 

ax = i3otoy -VNRF/ (YoYf) a", . 

(2.14) 

(2.15) 

Again we require the displacement to be small compared to the beam 
size so that the emittance is not diluted . The resulting tolerance on the 
jitter of the tilt angle is 

(2.16) 

In the case of CUC this means a" <"; 47 /1rad or, in terms of the 
displacement tox of one end of the section with respect to the other, 
aJox <"; !2/1m. 

2.5 Rotation Jitter of Quadrupoles 
Damping rings naturally produce asymmetrical emittances, and 

one may want to preserve the asymmetry during acceleration. For 
instance, luminosity considerations and final focus design strongly 
favour flat beams in linear coll iders. Of course, preservation of 
asymmetrical beams requires the control of the coupling between 
vertical and horizontal plane, as is introduced by rotated quadrupoles 
for instance. 

Let us consider a beam which is much larger in the y- than in the 
x-direction. The y-motion is therefore relati ve ly unperturbed, while 
the x-motion is strongly influenced. 5 A quadrupole of focal length fi at 
position s;, which is rotated by a small angle 8i, introduces a kick in 
the x-motion} which can be descr ibed by a local curvature of 

Q(s)- I = - 2 ~ y(si)5(s - Si) . (2.17) 

Comparing Eq. (2.17) with Eq. (2.8) we can proceed as in Sec
tion 2 .3 and we find for the reference trajectory at the end of the 
machine: 

N 

x(L) = 2 ~ yo(yolyr) 1/ -1 ;~I 8; cos /1,,(L ,s;) sin /1, (L, Si) . (2.18) 

In deriving Eq. (2.18) we have included the adiabatic damping of the 
y-motion and we have assumed a lattice of constant phase advance as 
before. The r.m.s. value of x(L) follows from an ensemble ave rage as 

130 r;:-;-
ax = r;;vNq ayraJ). (2.19) 

The trajectory displacement must be sma ll compared to the beam size 
in the x-direction and the resulting tolerance of random rotation s is 
given by 

a xf fo N - 1/ 2 aH <"; - - q 
ayr 130 

(2.20) 

In CUC the beam width in the x-direction is comparable with the one 
in the y-direction and both motions will strongly perturb each other. 
The above approximation is therefore not valid. 

2.6 Chromatic Variation of the Reference Trajectory 
From Eq. (2 .3) we note that the reference trajectory has a 

chromatic dependence. In phase space this manifest s it se lf by a 
changing position of the beam ellipse with s. The emittance becomes 
diluted . To estimate this effect we consider again the lat eral 
displacement of quadrupoles ~s in Section 2.3. But this time we do not 
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take into account the adiabatic damping and the /3-function in order to 
simplify the calculation (it changes the result very little). We solve Eq. 
(2 .3) with (2.8) and find for the chromatic part of the trajectory at the 
end of the linac: 

AXi [~. L - Si' ] x, = Xi(O) - Xi(O) = - - 1 -.- SIn k ~ - SIn k(L-Si) . 
, kf +u vl-~o 

(2.21) 
In Eq. (2.21) we can distinguish two regimes : 
i) Small chromatic variation 'h ~okL ~ I. 

Developing Eq. (2.21) up to first order in a and 'h ~okL yields 

I AX' 
X, "" - - ~o --' (L - Si) cos k(L - Si) . , 2 f 

(2.22) 

For a sequence of N q displaced quadrupoles we perform an 
ensemble average as in Section 2.3 and obtain the r.m.s. value of 
the trajectory as 

I . p. '" 3 
rho = 17 ~sIn - vNq O(Jt», 
. v6 2 

where we have used L = Nqec and ejf = 2 sin p.12. 

ii) Large chromatic variation 'h ~okL 2: I. 

(2.23) 

This is the typical regime for linear colliders. Keeping only the 
zero-order term in 0 of expression (2.21) gives 

Xbi "" - 2 ~~i sin l~ ~ok(L - Si)] cos l k( I - ~ ~o )(L - Si)] 

(2.24) 

and after averaging over all Nq kicks we obtain the r.m.s. value of 
approximately 

sinp.12 ~ 
(J'D = 2---;72 v Nq (J_" . (2.25) 

As before, we require the chromatic variation of the reference 
trajectory, Eqs. (2 .23) and (2.25), to be small compared to the beam 
size. The resulting limit on the tolerable displacement jitter is then 

for 'h ~okL ~ 1 

for 'h ~okL 2: 1 

(2.26) 

In CLIC the total phase advance kL is 2220 rad and an energy spread 
of 1070 clearly results in a strong chromatic variation. The tolerable 
displacement jitter must therefore be sma ller than 
0.025 p.m. 

2.7 Chromatic Variation of the Corrected Trajectory 
In the foregoing section we have seen, Eq. (2.24), that the 

chromatic deviation of the trajectory, due to a displaced quadru
pole, grows like sin ['/4 ~ok(s - sill along the linac. In principle, if the 
displacement is static, we can correct the trajectory and keep it within 
some limits . To estimate the chromatic variation of such a corrected 
machine let us, at first, consider a single displaced quadrupole in an 
otherwise ideal machine. For simplicity we again neglect acceleration. 
The kick at s = Si can be detected at s = Si + Cc and corrected by two 
kicks of 

- (2L'.x;/f) cos kCe at s = Si + C,· , 
and 

L'.x;/f at s = Si + 2ee . 

For the rest of the linac a particle with reference momentum will have 
a zero trajectory. However, an off-momentum particle has a . 
trajectory given to first order in a by 

x'" = Xi(O) - Xi(O) = -2~sin2IMxisin l k(1 + ~~O)(L - Si - ee)] 
(2.27) 

at the end of the linac. Averaging over all Nq magnets we obtain the 
r.m.s. value of the trajectory as 

(J, ;, = V21~1 sin
2 ~ oJN;, (J." . (2.28) 

The limit of the tolerable quadrupole displacement in a corrected 
machine is then 

(2 .29) 

For CLIC, it follows from Eq . (2 .29) that (Jt» ~ 5.0 p'm if the energy 
spread is I 070. 

3. Wake fields and SBBU 

In the case of relativistic bunches one wants to know the beam
induced fields, averaged over a certain length, which act on a 
co-travelling particle. These fields are called wake fields. Their 
longitudinal component causes the beam to lose energy and induces an 
energy spread along the bunch. Their transverse components, excited 
by the head of the bunch, deflect the tail from the axis and cause a 
blow-up or even a BBU . 

As an example, Fig . I shows the wake fields of a Gilussian bunch 
in a CLIC accelerating structure . The longitudinal component is the 
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Fig. I Wake fields of the CLIC RF structure. 

one belonging to monopole (axis-symmetric) fields and is experienced 
by a probing particle at position z in the bunch independent of its 
transverse position. The transverse components belong to dipole 
fields. They are given per unit offset r of the bunch. A probing particle 
at position z and with an azimuthal angle </> with respect to the bunch 
exper iences the fields 

r cos </> W,(z) and - r sin </> Wo(z) 

independent of it s radial distance. All other wake fields , with higher 
azimuthal dependence, have normally a very small effect on 
low-emittance beams. 

If all dimensions are scaled with the RF wavelength, we find that 
the wake fields sca le as 

W II 0<\ -2. (3.1 ) 

That is the reason why wake-field effects are particularly cumbersome 
in linear colliders where the RF frequency has to be high in order to 
keep the power consumption within reasonable limit s. To reduce 
wake-field effects one can counteract them , as will be discussed in the 
next section, or one can reduce the wake fields themselves. Since they 
scale with the aperture 2a as 

w~ <X a - 2.H , (3.2) 

and with the bunch length as 

(3.3) 

one may increase the aperture and decrease the bunch length. But, 
with increasing aperture the machine length also increases 
proportionally to a - o.s for equal power consumption. Short bunches 
have so-ca lled higher-mode losses proportional to (J,- ' and are not 
easy to make. 

Now, let us consider a bunch travelling in a periodic focusing 
channel. The head of th e bunch will excite transverse wake fields 
which act periodically on the tail in a way that the defocusing periods 
are longer than the periods of focusing . The net result is a blow-up of 
the tail. This effect has been analysed with a perturbation methodS 
Starting from the equation of motion for a particle 
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~ [1'(Z,S) ~s X(Z,S)] + K(z,s)y(z,s)x(z,s) 

e j' = - 2 dz' Q(z')W" (z' - z)x(z',s) , 
me z 

(3.4) 

where z is the longitudinal position in the bunch and s the coordinate 
along the linac, an asymptotic formula for the displacement x was 
derived: 

x(z,L)/xo'" v'Eo/(6'1!'Er) '1 - 1/ 6 exp (3v'3'1' / J/4) x 

cos (koL - 3,]'/314 + '1!'/12) , 

where 'I is a strength parameter given by 

'I = (~- ~)2 eQWo In Er ~ 1 . 
2 e koEoG Eo 

(3 .5) 

(3.6) 

Equation (3.5) was derived under the assumption of smooth focusing, 
K(z,s) = kil, linear acceleration, E(s) = Eo(l + Gs), and a bunch of 
constant charge distribution with length e and total charge Q. The 
wake field depends linearly on z with a slope W ole. 

It is exactly the exponential factor in Eq. (3 .5) that characterizes 
the blow-up. Note also that the phase depends on 'I, with the tail 
lagging behind the head. This phase lag is essential for the instability 
to develop. [t also indicates how to cure it by introducing a spread in 
the wave number, which cancels the phase lag coming from the wake 
field. 

In the case of CUC the strength parameter is 'I = 492 at the 
bunch end, z = - el2 (e = 2v'3 az), and the tail is blown up by a factor 
of 165. 

4. 'Landau Damping' 

The stabilization of the transverse blow-up is most easily studied 
with the two-particle model. The bunch is modelled by two 
macro-particles, each of charge QI2 and separated longitudinally by a 
constant distance e = 2az . We neglect acceleration and assume smooth 
focusing. The trailing particle has a slightly different energy E + LlE. 
Then, the equations of motion are 

x 7 + k2XI = 0 
(4.1) 

The first particle does not feel a transverse wake field and undergoes 
free betatron oscillation. The second particle experiences the wake 
force of particle I and has a wave number different by Llk/k = 

~LlE/E. We can easily solve Eqs. (4.1), with initial conditions 
XI(O) = X2(0) = Xo, and obtain for the difference between the two 
trajectories 

X2(S) - x I (s) = - Xu l2 - eQW" (f) j sin (~llkS) sin (k + ~ Llk)S . 
2EkLlk 2 2 

(4.2) 
In Eq. (4.2) we distinguish three different cases: 

i) No energy spread, LlE = Llk = O. 
The difference grows linearly with s, i.e. 

eQW" (e) . 
X2(S) - X,(S) = Xu ~s sm ks . (4.3) 

Note that the growth is even much faster for a distributed charge, 
as shown in the previous section. 

ii) Very small but finite spread, Ilk ,c 0 «< k. 
The difference of the trajectories becomes 

X2(S) - x I (s) ", Xo eQWJ 
(e) sin (~LlkS) sin (k + ~ Llk)S . (4.4) 

2EkLlk 2 2 

It is beating with zeros at Llks = 2n'1!' and maxima at Llks = 

(2N+ 1)'1!'. 
iii) 'Landau damping', 

Llk = eQW~ (n 
4Ek 

(4.5) 

Both trajectories are equal. The extra phase advance of parti.cle 2 
owing to its lower energy, cancels the wake-field kick from par
ticle I. 

Case (iii) is referred to as 'Landau damping' although it is somewhat 
different. The lack of growth is simply due to a cancellation of forces. 
More correctly it is called BNS damping, referring to the authors9 who 
first studied the effect. For a real distributed bunch the criterion, 
Eq. (4.5), looks a little bit different 

d eQ d 
2k(z) dz k(z) = 2E dz W" (z) . (4.6) 

with the coordinate z going from head to tail. 
By inspection of Fig. I we note that the transverse wake field of 

the CLIC accelerating structure is well approximated by a linear 
function in the core of the bunch. The stability criterion, Eq. (4.6), 
then requires a linear spread in the wave number' with a slope 
dk / dz = 215 m - 2. This translates into an Lm.S. spread of Llk / k 
3.4070 or an Lm.s. energy spread of LlE/E = - 2.7%. 

5. RF Focusing 

Instead of creating the spread in betatron wave number, 
necessary for Landau damping, by inducing an energy spread, one 
may design a system which focuses every part of the bunch differently. 
An RF quadrupole system does this . For highly relativistic particles it 
consists simply of a normal disk-loaded wave guide with slot-shaped 
irises . A charge passing off centre, in the direction of the slot, 
experiences a transverse magnetic field only and is focused. 
Perpendicular to the slot it feels the focusing magnetic force plus a 
defocusing electric force which is twice as large. The focusing gradient 
is 10 

8' = '1!'Ea sin ct>1(CARI) , (5 . 1) 

with Ell being the peak accelerating field and ct> the RF phase angle 
measured backwards from the crest. For CUC the peak gradient is of 
the order of 100 T i m. 

Every longitudinal position z within the bunch corresponds to a 
different phase angle ct> and therefore a different focusing force. The 
wave-number spread is 

4'1!'z I'-u 
Llk / k ", -\~- tan - cot ct>o 

I\RI·P.O 2 
if (5.2) 

The subscript 0 refers to the bunch centre. 
In the case of CUC, with a focusing system completely made of 

RF quadrupoles, the Lm.s. wave-number spread is Llk/k = 23 .8 % at 
ct>o = 20° . For Landau damping we only need Llk / k = 3.4%, see 
Section 4, and we can therefore have a normal external focusing with 
some fraction of RF focusing . Also, the focusing strength can be 
reduced, thus allowing for relieved jitter tolerances. 

6. Numerical Simulation 

The only way to solve the complete equation of motion (3.4) is by 
numerical simulation. A computer code " has been written which takes 
into account the discrete nature of a real machine. It calculates 
transfer matrices for such elements as drift spaces, quadrupoles, and 
accelerating structures with wake fields. The bunch is divided 
longitudinally into a number of slices and each slice affects the motion 
of all slices behind it. All particles in one slice are assumed to have the 
same energy and velocity of light. The code transports each centroid 
(x, x', y, y') of a slice through the lattice to first order by 
multiplication of the transfer matrices. Later the code was extended 12 
and made available under the name L TRACK. It has been used 
extensively to model the SLAC Linear Collider (SLC) .-1 

Instead of tracking the slice centroids from element to element it 
is sufficient in many applications to smooth the focusing and to 
integrate Eq. (3.4). This is conveniently done by writing first-order 
differential equations for every centroid.1J We have written a code 
UNBUNCH 14 which uses this method. The code includes /i-function 
wake fields, lateral random offsets of quadrupoles and RF sections, 
and also fractional RF focusing. In the following we givc result s 
obtained with UNBUNCH . They all refer to the CLlC parameters, 
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Table I. In contrast to Ref. 14 we use here the chromaticity of a 90° 
FODO lattice and not ~ = - 0.5 as for smooth focusing. 

Figure 2 shows the position of the slice centroids at the end of the 
linac in the case of zero energy spread. As calculated [Eq . (3 .5)], the 
bunch tail is heavily blown up and lags behind in phase. The blow-up 
is not quite exponential and is therefore weaker-only a factor of 130 
instead of 165 as predicted, since the transverse wake field grows less 
than linearly. 

• . ... -.-.-.. -.-.... _-- .-------- --- --- .-- ------.------.-.------------+.-------------. 

! ::·:.::·::·:·::: .. :· ... : ...... ! ..... oL. .... ! .............. ! .............. ! ............. ! ............. . ! .............. ! 
x : , 
100. : 

I I t I I ----------.--------------. ----- -- --- ---.- -- ----- -- ----+ -- ----- ------->--------------+---------_.--- . , , 
t I , I I _. _____ ._. __ . + _ _ _ __ ._ . __ • _ _ • ___ ___ • _ __ _ ___ • _ _ ___ _________ t __________ • ___ • 

, , , 
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Fig . 2 a) Bunch shape and b) phase plot in the case of zero energy , 
spread and unit value injection offset (at the end of the CLIC linac). 

In principle, one can suppress any blow-up by shaping the wave 
number following Eq. (4.6). All slices would then oscillate coherently 
with an amplitude given by adiabatic damping. In the case of a real 
energy spread, resulting from the superposition of the RF field and the 
longitudinal wake field, the fit of the spread in wave number is poor. 
In order to make it fit, at least in the bunch centre, the bunch has to be 
let slip behind the crest of the RF field by a certain angle <PRJ'. This 
means loss in accelerating gradient and an energy spread of the order 
of 3070. To reduce the induced spread, the first part of the linac can be 
driven with a negative phase required for damping, and the second 
part with a positive phase allowing for some blow-up . The position 
and the value of the phase jump are found by a trade-off between 
damping and energy spread. Table II lists a typical set of parameters 
for CLIC. Good damping was found to occur for an RF phase angle 

Table II 
A typical set of operational parameters and jitter requirements for 

CLIC; a" ac, aQ are the r.m.s. values of the injection jitter 
and the displacement jitter of RF sections and quadrupoles, 

leading to 25070 emittance increase 

External focusing only: 
L, = 6.5 km: <PRJ'I = - 7°, 
L2 = 6.0 km: <PRI'2 = + 10° 
Lr = 12.5 km: D.Er = - 4.0070, 

a, = 9 I'm, 
Added on RF quadrupoles: 

D.E", = - 3.6070, 

D.')'r = 1.2070 
ac = 10f.!m , 

60° FODO lattice,B:'""" = BRI, 
<PRI, =+5 ° , D.Er= -3.3 ° , 
a, =44f.!m, ac = II I'm, 

D.')'I = 2.7070 

aQ = 0.07 I'm 

<Po = 0° , " 130 = 25 m 
D.')'r = 0 .9070 
aQ = 1.4 I'm 

<PRF between . - 5° and - 9°, corresponding to an energy spread D.')' 
between -2 .3070 and -3.1070, in agreement with Eq. (4.6) . This 
energy spread could be reduced to 1.2070 at the end of the linac by 
choosing <PR F = + 10° in the second part of the machine. 

Figures 3, 4, and 5 show the position of the slice centroids at the 
end of the linac for the operational parameters given in Table II. The 
case with an initial offset of the bunch (Fig. 3) demonstrates that the 
slices are well centred around the axis. The head particles oscillate 
freely with an amplitude given by adiabatic damping . They are out of 
phase, so their wake . fields dq not add up but interfere positively and 
damp the core of the bunch . In the next example (Fig. 4) the bunch is 
injected on-axis, but the RF structures are assumed to be laterally 
displaced in a random. way. The head particles, again, do not 
experience any wake fields and stay aligned. The tail is blown up 
slightly. Finally, Fig. 5 shows the case of random quadrupole 

-.- - -- -- ---_ ... -.------ ---- . 

o. ; . 

-- -- _ . . ....•. . ' ..... " . . . " ... 

.... ......... ....... , , 

-0.3! ........ ...... . 

- 4. 

, , , , . " , 
-r------,-----,-------, 

I . , , , 

O. Z/ 5 - 4. 

Fig. 3 Bunch shape in the case of real energy spread, a perfectly 
aligned machine, and unit value injection offset (at the end of the 
CLIC linac). 

Fig. 4 Bunch shape in the case of random RF structure 
displacement, unit r.m.S. value, and on-axis injection (at the end of 
the CLlC linae). 

8. , .............. , ..... ........ . 

x 

O. ; ...... ........ . ; ......... .... . 

· 8. 
- 4. O. z/6 - - _ 4. 

Fig . 5 Bunch shape in the case of random quadrupole displacement, 
unit r.m.s. value, and on-axis injection (at the end of the CLlC linac). 
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displacements. Head and tail ar~ blown up equally. The core is slightly 
damped by wake fields . The resulting emittance blow-up allows us to 
fix upper limits for the r.m.s. jitter values in these three examples. As 
expected, the case of displaced quadrupoles is by far the worst. A 
tolerable r.m. s. displacement of 007 I,m ~e("ms hard to achieve, 
although it is already larger than for a single particle 
[Eq. (2.12)]. 

Table II also shows the typical values for a focusing system 
consisting of external magnets plus RF quadrupoles. The RFQ system 
is thus designed so that the bunch centre is located at zero gradient, 
<Po = 0, and the peak RF gradient is equal to the external gradient. 
This means that the RF system only provides a spread in betatron 
wave number and no focusing. The phase angle with respect to the 
normal RF can now be chosen so as to minimize the energy spread, 
yielding q,RF = 5° and ~"Y = 0.9070. The slope of the wave number at 
the bunch centre and at injection is 

dk / dz = - 871"2 tan flol2 = 4353 /A~O 
(flOARFA~O) 

(6.1) 

for flO = 60° . Since for Landau damping we require dk / dz = 215 m - I 

(Section 4) , we can reduce the focusing strength so that A~O = 20 m. In 
fact, the simulations show that maximum damping happens at 
A~O = 25 m. Figure 6 gives the bunch shape for these parameters in the 

10. ; ...... ... ...... ...... . 

x : 

o. : 

-10. : ....... ..... . 

- 4. 

, . 
I ••• "I" " o. 

•••• :. . . -: ! " 

, , 
------- -.-----... -.. _-................ . ---.. -_._- ---. 

o. Z /6 - -

, , , . , , , , 
, , 

. . , 
, 

4. 

Fig. 6 As Fig. 5, but with an added on RF-quadrupole system 
(parameters in Table II). 

case of random displacement of the external quadrupoles . The 
resulting limits for the tolerable jitter motion are much less serious 
than for external focusing only, but the limit for the quadrupole 
motion is still a big problem. 
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