Proceedings of the 1988 Linear Accelerator Conference, Williamsburg, Virginia, USA

DESIGN AND FABRICATION STUDIES OF HIGH GRADIENT ACCELERATING STRLCTLRES FOR THE CERN LINEAR COLLIDER (CLIC)

I.Wilson, W.Schnell and H.Henke
CERN, Geneva, Switzerland.

Abstract

. An energy of 1 TeV per beam will be obtained in CLIC by elassical RI acceleration using a high gradient dise loaded waveguide operating at 29 ($\mathrm{BI} \%$. The basic parameters and resulting technical requirements of such a structure are given together with a conceptual design of a possible engineering solution. Special design features and difficultios associated with the two most likely ways of fabrication are discussed and lirst results from prototype tests are given. Attention is drawn to the possibility of surface damage by fatigue from induced cyclic stresses in pulsed operation for excessive clectric field gradients. A beam-derived signal from a microwave position pickup incorporated into the main accelerating sections is foreseen for alignment purposes.

Introduction.

In the mid 1980's when it became clear that no major breakthrough in new acceleration techniques was imminent, attention refurned to radio frequency acceleration with the hope that the principles of the classical travelling wave linac could be adapted to the requirements of linear colliders. The worldwide effort devoted to this activity over the last few years has proved to be particularly rewarding and a large consensus now believes that RI ${ }^{2}$ acceleration - "classical" in principle but not at all in the choice of parameters nor in the technology required - is the most promising approach to linear colliders at this time. An energy of 1 I heam will therefore be obtained in CIIC by classical RI' acceleration using a high gradient disc loaded waveguide (I)IW(i) operating at 29 ($\mathrm{II} \%$
This paper deseribes the main parameters and resulting technical requirements of such a structure and gives a conceptual design of a possible engincering solution. Manufacturing techniques are discussed and plans for prototype test pieces are outlined. The choice and interdependence of CI IC general machine parameters is deseribed elsewhere ${ }^{1}$.

Basic structure parameters.

One way to obtain high accelerating gradients at acceptable RI: power to beam power efficiencies is to operate at very high frequencies. Values around 30 (Bly (Icm wavelength) however appear to be a limit imposed by transverse wake field problems and fabrication difficulties. The destructive effect of heam induced transwerse wake fields increases with the third powe of the frequency but can be held within reasonable limits in single bunch operation by adopting the rather large aperture fo wavelength ratio of 0.2 .
The hasie cell of the CIIC structure is a variant of the usual I)I WG which after investigating alternative crossbar and ladder structures? was found in have an overall performance which is difficult to beat.
Main parancters for phase matched structures with straight - sided dises of thickness 0.575 mm as calculated by URMII ${ }^{3}$ are given as a function of beam hole diameter in Fig. I. It is shown later that this simple geometry is modified to suit the different fabrication techniques being investigated. One would like to have a high shont impedance R^{\prime} to keep the peak power low, a high R^{\prime} / Q to minimise average power, and a reasonably high group velocity v_{g} to minimise pulse distortion and maximise the length of the sections. The assumed design values for operation in the $2 \pi / 3$ mode at 29 ($1 \mathrm{II} \%$ are given in Table 1 . Values of R^{\prime} and (?) have been reduced by 5% to account for extra losses due to surface roughness.
Transerse wakefields can be stahilized by creating a large spread in the wavelengthe of the transverse oscillations of the partictes within a bunch by R1 focussing ${ }^{4}$. A small fraction of the accelerating sections will therefore have an asymmetric aperture (a slot instead of a circular hole). Such sections when oriented alternatively at 90 degrees with respeed to one another at sutable period lengths produce RI: quadrupoles of considerable transwerse focussing power without appreciable loss of shunt impedance for acceleration. The influence of shot height on effective focussing gradient (G) and effective axial clectric field (Iz) has been investigated for a six cell structure using the MAIIA 31) computer code.3.

The on axis value of $\mathbf{G} / \mathrm{E} / 7=0.85$ found for at 3.5 mm slot corresponds to a gradient of $23 \mathrm{~T} / \mathrm{m}$ for an effective accelerating field of $80 \mathrm{MV} / \mathrm{m}$ and an RI' phase angle of 20° from the peak. It should be noted that for maximum focussing there is no acceleration and vice versa. Nthough the effective energy gain for off-centre particles travelling parallel and perpendicular to the slots is different, the relative differences for a few microns of transverse displacement (typical CIIC betatron amplitudes) are negligible - values of $\Delta \mathrm{F} / \mathrm{I}_{\mathrm{o}}$ o per micron are in the 10^{-5} range.

Iig. 1 Variation of structure parameters with beam hole diameter.
It is seen from Table I that structures with 3.5 mm slotted irises have RI ${ }^{2}$ characteristics comparable to those of structures with 4.0 mm dianeter round holes.

Table 1: Stoucture parameters at 29 Gll

Aperture			Round	Shoteri
Dimension		mm	4.1	3.5
Shunt impedance	R^{\prime}	MS / m	109	1.2113
Quality factor	Q		4112	4)501
	$\mathrm{R}^{\prime} / \mathrm{Q}$	kS / m	26.5	2.4 .3
Group velocity	$\mathrm{v}_{\mathrm{g}} / \mathrm{c}$	\%	7.4	9.2

Using the values for a 4 mm circular hole and striking a reasomable compromise between peak and average power by choosing a field attenuation of 0.25 Nepers/section leads to the linae parameters given in Table 2 for a repetition rate of 1.69 kJIz and a pulse length cyual to the filling time rf.

Table 2: Main linac parancters

Gradient	$80 \mathrm{MV} / \mathrm{m}$
Section length	24.8 cm
Iiall time	11.3 ns
Cells per section	72
Sections per linac	$500(0)$
Ratio output/input power	0.61
Total peak input power	$1.875 \mathrm{TW} /$ linac
	$150 \mathrm{MW} / \mathrm{m}$
	$35.75 \mathrm{MW} /$ linac
Total average input power	$2.86 \mathrm{~kW} / \mathrm{m}$
	$1.125 \mathrm{~kW} / \mathrm{m}$

Tolerances and surface finish.

For 50000 sections per linae and 72 cells per section in would be a great advantage if every' eell did not have to be individually tuned. The lewe of tolerances required on main cell dimensions in order mot to execed a given phase crror per cell ($\Delta \phi$) can be estimated as follows. $\mathrm{v}_{\mathrm{g}}=\Delta(\pi / \Delta \beta=\mathrm{I}(\Lambda \pi /(\Delta \phi)$ where the cell Ingeth $\mathrm{I}=\mathrm{=} / 3 \mathrm{f}$ for $2 \pi / 3$ mode Rewriting this expression and assuming as a rough approximation that $\Delta f / f=\Delta \mathrm{D} / \mathrm{I})$ gives $\Delta \mathrm{D} / \mathrm{I}=\left(\mathrm{v}_{\mathrm{g}} / \mathrm{c}\right)(3 \Delta \phi / 2 \pi)$. Allowing a $+: 5^{\circ}$ thtal
phase error over a section length the r.m.s phase error per cell is 0.6° for non systematic errors, and $+/-0.07^{\circ}$ for systematic errors. The corresponding tolerances are $+1-3 \mu \mathrm{~m}$ and $+/-0.4 \mu \mathrm{~m}$. There is a strong hope that tuning can be avoided by machining all cell dimensions to less than $+/-2 \mu \mathrm{~m}$.
Theoretical estimates of degradation of Q as a function of surface finish and skin depth ${ }^{5}$ indicate that for copper at 29 (GIIz a finish of N 2 $\left(\mathrm{R}_{\mathrm{a}}=0.050 \mu \mathrm{~m}\right)$ is required to obtain 95% of the theoretical Q value.

Transverse damping slots for multibunch operation.

Four equally spaced radial slots of rectangular cross section are foreseen to channel away higher mode energy from the centre to a dispersive sink. The slots must be wide enough to allow the lowest frequency deflecting mode $\left(\mathrm{F}_{11}\right)$ to propagate. This mode has a frequency about 1.5 times the fundamental and the minimum slot width $\left(\lambda_{11} / 2\right)$ is therefore $\simeq \lambda_{01} / 3$ which is unfortunately the cell length for the $2 \pi / 3$ mode. There is good hope, however, that slots in every sccond cell will be sufficient. To be effective the slots have to cut through the discs.

Surface heating.

The highest accelerating gradient at which DI WGs can be run is limited amongst other considerations by surface heating. Nlthough the extreme limit corresponds to the melting of the cavity walls, a more realistic limit as shown below is probably the appearance of surface damage due to fatigue cycling under thermally induced stresses.
Using the dissipated power distribution along the inside surface of a cell a maximum flux density of $\mathrm{P}_{\mathrm{a}}=172 \mathrm{~kW} / \mathrm{cm}^{2}$ was found for a single power pulse in the first cell of each section where the losses are highest (75 MW / m). For a metal surface at an initial temperature T_{O}, with heat supplied at $x=0$ at the constant rate P_{a} per unit area for time τ_{f} the maximum temperature occurs at the surface $(x=0)$ at the end of the pulse ($t=\tau_{\mathrm{f}}$) and is given by

$$
\mathrm{T}_{\max }=\left(2 \mathrm{P}_{\mathrm{a}} / \mathrm{K}\right)_{\vee}\left(k \tau_{\mathrm{f}} / \pi\right)
$$

where $\kappa=K / \rho \mathbf{c}, \rho$ is the density, c is the specific heat and K is the thermal conductivity. It can be seen from Fig.2, where the temperature increase is plotted as a function of distance from the surface, that transient effects are confined to a very small surface layer of about ten times the skin depth, and that the large temperature gradient within this surface essentially disappears after 1000 ns .

Fig. 2 Temperature increase in the surface laver.
Fig. 3 shows surface temperature as a function of time, the time $\mathrm{t}=591700 \mathrm{~ns}$ corresponds t 0 the time between pulses. It is clear from ligs 2 and 3 that the transient problem is a single pulse problem and is essentially independent of the surrounding geometry. The resulting maximum surface temperature increases are

$$
\begin{array}{cc}
\Delta \mathrm{T}_{\max }=5.6 \mathrm{C}^{0} & (\text { for } 80 \mathrm{MV} / \mathrm{m}) \\
\Delta \mathrm{T}_{\max }=22.4 \mathrm{C}^{0} & (\text { for } 180 \mathrm{MV} / \mathrm{m})
\end{array}
$$

For such localised surface temperature gradients the induced thermal stresses are given approximately by

$$
\sigma=-1 \vdots \times \Delta 1
$$

where I: is the Modulus of Ilasticity, a is the coefficient of thermal expansion and $\Delta{ }^{\prime} \mathrm{I}$ is the temperature increase. The maximum induced eyclic stresses are therefore

$$
\begin{gathered}
\sigma=0 \rightarrow-6.8 \mathrm{~N} / \mathrm{mm}^{2}(\text { for } 80 \mathrm{MV} / \mathrm{m}) \\
\sigma=0 \rightarrow-43 \mathrm{~N} / \mathrm{mm}^{2}(\text { for } 160 \mathrm{MV} / \mathrm{m})
\end{gathered}
$$

Fatigue data for OFIIC under these conditions is not readily available, but as an example for reversed cycling of $+1-50 \mathrm{~N} / \mathrm{mm}^{2}$ at room temperature, annealed OFIIC has a lifetime of only 10^{8} cycles. Tests are needed to establish whether or not this is serious problem.

Fig. 3 Surface temperature decay with time.

Transverse alignment and beam pickups.

It is foreseen to maintain the transverse alignment tolerance along the linac - calculated ${ }^{6}$ to be about $10 \mu \mathrm{~m}$ - by active feedback using precision movers and a beam derived pickup signal. The simple circular cavity,coaxial to the beam axis and excited in \sum_{11} mode by an off - center beam, forms an excellent position pickup with the potential of micrometer resolution ${ }^{7}$. Incorporating the pickup into a rigidly supported structure with a precise reference to the movers is however essential.

Conceptual design.

A conceptual design of the CIIC main linac structure is shown in I'ig. 4. Four high precision accelerating sections are inserted into the central hore of a 1 m long copper cylinder which provides mechanical support, water cooling, vacuum pumping, the input and output waveguide feeds and the higher mode dispersive sink. The connection between cylinders is shown in Iig..5. Iligher mode energy produced at the gaps between section lengths is absorbed by lossy ceramics. The ends of adjacent eylinders reinforced with stainless steel rings and machined to be concentric with the central bore - sit on a common V - block and gaurantee continuity of alignment.
The pickup monitor positioned at the entrance to each four section long module has two cells which are slotted for multibunch operation.

Iig. 4 Conceptual design of the CIIC: accelerating structure.

Fabrication by brazing copper cups.

Short test stacks of precision machined cups as shown in Iig. 6 have been ordered from industry and will he hrazed at CIRN under slight axial compression in a free hanging position after precision alignment in the jig shown in Iigg.7. This particular choice of cup geometry simplifies machining and puts the brazed joint in a comer where the electric field is low. The copper cups will be machined to the required tolerances and
low. The copper cups will be machined to the required tolerances and surface finish on a Pneumo MSG-325 diamond tool lathe. This two axis machine has CNC control, closed loop laser interferometer feedback with 25 nm resolution, vibration isolation and air hearing spindle and slides.

Fig. 5 Connection between CIIC modules.

Fig. 6 Short test stack of precision machined cups (29.985 (ill\%).

Fig. 7 Alignment in V -block prior to brazing.

Fabrication by electroforming.

Prototype work has started with the aim of fabricating complete section lengths by depositing copper onto disposable precision machined mandrels of the form shown in Fig.8. It is aknowledged however that to obtain the required tolerances and surface finish on such long mandrels will not be easy. Λ small development program has been initiated to

find ways of filling the 0.55 mm wide grooves with copper without forming voids or cracks. Ideas being considered as well as modifying the cell geometry to have rounded corners include introducing electrodes into the grooves to obtain a more favourable field distribution and jet spraying through fine nozzles onto the bottom of the grooves. 'Tests are underway to find appropriate ways of dissolving away the mandrel without a significant deterioration of the surface finish of the electrodeposited copper.

Both the electroforming and brazing techniques have been successfully used in important pionecring work in this field to fabricate the IIGS 33 GHz structures at Iivermore ${ }^{8}$.

Wire machining of rectangular slots.

It is proposed to cut the transverse damping slots ($1 \mathrm{~mm} x$ 3.5 mm) and the input and output waveguide ducts $(7.1 \mathrm{~mm}$ x 3 mm) by electroerosion using a continuously running wire in demineralised water. This technique has an accuracy of about 0.01 mm and produces surface finishes of $\mathrm{N} 6 / \mathrm{N} 7$ $(0.8 / 1.6 \mu \mathrm{~m})$. Λ slotted CIIC cross section is shown in Fig. 9 .

Fig. 9 Cut fhrongh CIIC cross section showing transverse slots.

Vacuum.

The section lengths are pumped from four 20 mm diameter manifolds via the transverse damping slots. lirst estimates indicate that for an assumed outgassing rate in the cells under full power of 5×10^{-10} Torr. $1 / \mathrm{s} . \mathrm{cm}^{2}$ a pressure of 10^{-7} Torr should be possible.

References.

[1] W.Schnell, CIERN-LEP-RI/86-27 (1986).
[2] J- P Boiteux et al., CERN-IIP-R1/87-25 (1987). [3] URMII, and MAFIA computer codes, T.Weiland, DESY.
[4] W.Schnell, CIIC Note 34 (1987).
[5] D.Boehne, IILI:, NS 16/3 (1969).
[6] II.I Ienke, CIRN-IDP-RI/87-32 (1987).
[7] W.Schnell, CIERN - IEP - RI'/88-41 (1988).
[8] D.B. Hopkins et al., Furopean Particle Accelerator Conference, Rome (1988).

Fig. 8 Aluminium mandrel (75 cells +2 pickup cells) for 29.985 GII\%.

