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Abstract 

This work was undertaken to explore the capabilities of 
user-friendly technology in building an easy-to-use tool that could 
be applied to formulate quickly a workable design for a 
radio-frequency quadrupole (RFQ~ The' tool will be extended to 
include additional components. This paper outlines the derivation 
of scaling la~ from which we obtained a set of self-mnsistent 
equations that describe the behavior of an RFQ. These equations 
are relations between accelerator parameters (electric field, rf 
frequency, zero-current transverse and longitudinal phase 
advances per period) and beam parameters (current, energy, and 
emittance) that act as guides for designing RFQs. These equations 
show the various tradeoffs involved in choosing RFQ designs and 
help to choose starting points in parameter space for optimizing an 
RFQ for a particular requirement. By entering values in a simple 
spreadsheet, the design parameters of an RFQ can be calculated. 
The spreadsheet is fully described. 

Introduction 

The design of complex devices, such as an RFQ accelerator 
module, has depended on the use oflarge design programs that are 
dependent for input on files of data that are treated like card files. 
This input method is the result of programming in the era of batch 
oriented computer processing. These tools continue to serve their 
purpose well for detailed design. However, setting-up these 
"decks" of input can be tedious and prone to error because the 
user is not given help as to what information should be supplied on 
what "card." Also, the information that is supplied is usually 
position sensitive. The initial impetus for this work grew out of 
discussions concerning the need for a design tool that addressed 
the problem of the difficulty of data entry as well as a tool that 
could be used by someone, physically removed from the person 
who normally "runs" the design too\. This led to the consideration 
of creating a tool that could be based on a PC~lass machine, 
possibly portable, that could provide some ball-park estimates of 
the -design and cost for an accelerator, and that would be 
user-friendly enough that its use would be intuitive. To examine 
these requirements an RFQ structure was chosen as a model 
because a new formulation of a set a scaling laM had been 
derived[ 1 ][2] and a spreadsheet format was chosen because of the 
availability of the spreadsheet software and its inherent 
user-friendly features. The particular spreadsheet software used is 
Lotus 1-2-3"" based just on its availability on an IBM PC/AT""" 

This paper presents the formulation of the scaling laM from 
the electrical field properties of the RFQ. Space<harge is included 
in the formulation. The formulation leads to a set of equations, 
four, which describe the RFQ. There is freedom to chose which of 
the many variables in these equations are fixed and which four are 
left free to vary as the four equations are simultaneously solved. 
There are some variables that would have little meaning to fix and 
some, such as beam current or emittance that a designer might be 
forced or at least want to fix. Finally the spreadsheet itself is 
described. 

·Work supported and funded by U.S. Department of Energy. 
·"Lotus 1-2-3 is a trademark of Lotus Development Corp. 
···IBM and PC/AT are trademarks of International Business 
Machines 

Overview of Scaling Law Derivation 

The RFQ[3][4] is a device that provides transverse focusing, 
longitudinal bunching, and acceleration of beam particles. The 
RFQ's electrical properties are determined by using an 
electrostatic potential function which is used to calculate the 
electric field for beam-dynamics modeling and gives the shape of 
the RFQ vanes. The transverse particle motion in the RFQ is 
modeled by the Mathieu equation and the longitudinal motion by 
a harmonic oscillator equation. The Mathieu equation is (X 
represents both transverse coordinates) 

d2X 
tJs2 + [~r + B sin(2Jrs)]X = 0 , 

where s is a normalized length along the structure (s = 1 = one 

period) and ~r and B are constants. The parameter B is 
calculated from the equation for the external alternating gradient 

force of the RFQ and ~r is calculated from the transverse external 
and space~harge (Coulomb) defocusing forces. These parameters 
depend on the RFQ vane potential (I/), the vane radius (a), the 

vane modulation (m~ the average beam bunch velocity (p, ~ and 

the synchronous phase (IP. ) (relative phase between the beam 

bunch centroid and the cavity rf phase~ When IP, = 0, there is 

maximum acceleration with no bunching and when IP, = - 90", 
there is maximum bunching with no acceleration. An approximate 
solution of the Mathieu equation is[5] 

X(s) = Xo sin(ors)(1 + ::r sin(2Jrs)] where 

B2 1 

Or = [~r + (&rl' (1) 

Or is the phase advance per period (represents the average 

focusing force) and Xo is a constant set by initial conditions. 

The longitudinal motion is modeled by the harmonic 
oscillator equation 

d2Z 
tJs2 + ~LZ = 0 

which has the solution Z = Zosin(oLZ) where 

0L = Ii:;. . (2) 

unear space~harge defocusing terms are calculated from the 
electric-field components for a uniformly charged ellipsoid[6][7] 

to give ~L-H and ~r-JC which add to the constant terms, ~L and 

~r in the Mathieu equation and the harmonic oscillator equation. 
These space<harge terms depend on the dimensions of the 

ellipsoid (x...... ZWc:t;), the beam current (I). the charge-to-mass 

ratio [Qe;(moe 2
)] , and the rf wavelength (.4 ) that acts as a 

normalization factor. The Mathieu equation contains a periodic 
oscillating force term that is not present in the harmonic oscillator 
equation and that gives "flutter" to the beam. This is why we use 

X .... instead of XlJltU • The ratio of the transverse to longitudinal 
space~harge forces depends on the ratio of the transverse to 
longitudinal beam sizes (X/Z) through a form factor f[7]. Although 
f(Z/X) = X/3Z is a good approximation, we use the exact equation. 
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Relationships between the beam parameters I, fr, fL 
(beam current, and transverse and longitudinal emittances 
defined below), and the external-force-<letermined parameters, 

01TJ and OLO, which are zero-<:urrent phase advances generated by 
the RFQ, c.f., eqs. (1) and (2~ are obtained by defining the 

space-{;harge parameters f.lL and f.lr (which are the negative of 
the ratio of the space-{;harge forces to the external focusing 
forces~ These space-{;harge parameters relate the longitudinal 

and transverse phase advances, Or and OL, for a finite current 
beam with space-<:harge (Coulomb repulsion) forces to the 

transverse and longitudinal phase advances, 01TJ and OLO, for a 
zero current beam (no Coulomb repulsion~ The phase advanCl'"-s 

Or and OL can be written as 

OL 
2 = OL0

2(1- f.ld = OL0
2 

- !iL-sc and 

or2 = o1TJ~I- f.lr) = 01TJ2 - !ir -sc. (3) 

If we want stable focusing, the values for f.lL and f.lr must be less 
than I, otherwise the space-<:harge forces will overpower the 

external forces. Simulations have shown that the f.l values should 
be kept less than 0.8 to minimize emittance growth. 

The normalized cmittances, fr and fL, are the areas/Jr of the 
beam, enclosed by phase-space ellipses having semimajor axes 

(X""". X' """ ) or (ZMax. Z'Max ) [where X' = (I/A)dX/ds etc.] and 

are fr = X..,..X' """, fL = ZMtuZ'Mtu. The significance of the 
emittance is that it describes the volume of phase space (position 
and divergence) occupied by the beam particles and is a conserved 
quantity for linear systems (where X, Y, and Z are decoupled) 
which we are modeling. 

The equipartitioning theorem[8][9], which states that the 
thermal free energy is the same for each dimension (transverse 
and longitudinal~ and the virial theorem, which states that the 
average kinetic energy equals the average potential energy for 

linear systems, are used to obtain frOr = fLOL, which relates the 
transverse emittance and effective focusing force to the 
corresponding longitudinal quantities. All of the relationships 
defined above are used to calculate the scaling-law equations. 

RFQ Functions 

Using the above parameters and relationships, four 
equations must be satisfied by any RFQ that will transmit a beam 
in equilibrium with the linear forces. 

f.lr a2LO fl : 0 = 2[- - (1-f)-

f2 . 0 = A :fL
r 

. [41rf[JC~1TJ 0LO • m[JC2 . f.lL 1 j2 
. 3 1 ell frJh (1- f.ld2 QI(l - f.lr)4 

f3 : 0 = Jr(ur1TJ + a2LO)1 . sin q,,ARN);,p + 2X( 1 - f.lr) 
tr1TJ 1- f.lL 

f. : 0 = A _ [~ur1TJ + a2~'" . f ( Rr r )2fl 
xo~1 - f.lr)2 Q 0 

where X and A depend on a,fl. ,and>" through Bessel functions,V! 
is the flutter factor that depends on the B term in the Mathieu 

equation and Rr is the ratio of the minimum RFQ vane radius 
divided by the maximum beam radius. 

With four equations, four unknowns can be determined. It is 
up to the designer to pick just which four unknowns he wants to be 
determined. Another way of saying this is that the job of the 
designer at this point is to pick which parameters he wants to hold 
at a particular value. He must have a value for all but four of the 
parameters. There are three parameters for which one typically 
has no intuitive feel and can take whatever value is dictated by the 
rest of the model. The vane modulation factor, m, is one of these. 
The other two are the two sigmas, 01TJ and OLO. Allowing these 
three to be free to vary, one needs to pick yet another to be free to 
vary. This can be done by eliminating those variables that must be 
fixed. For example, one VoQuld not allow the particle mass or 
charge to vary. One VoQuld want to fIX the ratio of the electric field 
to the Kilpatrick factor to get as much acceleration as possible. 
The synchronous phase is fixed because the designer knows how 
much acceleration he wants out of the structure. Continuing in this 
manner, we eliminate all variables except beam current, rf 
frequency and emittance. Picking one of these and allowing it to 
vary means the other two can be fixed to whatever value the 
designer wants. Thus, by deciding on values for beam current and 
emittance, for example, the equations will determine the 
frequency that the RFQ must have. 

Reasons for Using Spreadsheet 

Aside from the perception that spreadsheets are easy to use, 
there are several more subtle reasons that this particular 
technology was chosen and why it turned out to be a good choice. 
In programming languages such as Fortran, execution takes place 
in a linear fashion, that is the program steps are executed one at a 
time, VoQrking from first to last. One of the difficulties with this, 
especially when considering maintenance of the program, is 
finding dependencies. A variable, in the program, may depend on 
another variable which obtains a value several pages away from 
the point of interest. With a spreadsheet each step of the 
calculation is a simulated parallel computation of the whole sheet. 
Because of this, it doesn't matter where computation is placed on 
the sheet and thus the calculation of a particular variable can be 
localized to where the variable appears. By adopting some simple 
rules, such as all dependencies appear in the row corresponding to 
the variable in question, the organization of the computation can 
overcome the non-localization problem. 

Spreadsheets were designed as a high-level tool to be applied 
to many problems that address themselves to the relatively 
computer-illiterate. Because of this, tools are provided for the 
spreadsheet designer that allow the building of menu-driven, 
fill-in forms that people find intuitive and easy to use. Also 
provided are tools that allow the designer, with relative ease, to put 
together graphs. Using a traditional programming language, most 
of a program is built around the user-interface and the display of 
the final answers. The spreadsheet has already taken care of these 
two problems. Of course, the draw-back here is that if you don't 
like the style of menu or what a graph looks like, that's too bad. 
You get what is provided. This has seemed to us a trivial point 
because the user-interface looks good and the graphics are flexible 
enough to do what we need. Also, in a traditional approach, one 
finds that for an iterative solution, the user is usually required to 
input all data on each iteration, although most of it remains the 
same. A programmer frequently corrects for this annoying input 
requirement by saving this "previously-input" data on the 
computer system's file system. This requires the addition of a 
number of program steps that are not directly related to solving 
the problem at hand. The menu that the spreadsheet provides 
keeps track of and displays the last values changed on the form, 
even between sessions. 

The spreadsheet approach is not completely satisfactory, 
however. The PC/AT, the machine that the spreadsheet is 
implemented on, is fairly slow and because of this, the calculation 
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is not as fast as it might be. Using a spreadsheet for a lengthy 
calculation has its own set of problems of which an implef1cntor 
must be aware. In a straight-forward implementation, the whole 
spreadsheet is recalculated each time a value in the spreadsheet is 
changed. This can cause huge delays, a real problem especially 
when maybe one doesn't care, at a particular point, whether there 
are up-to-date values in the spreadsheet. The capability has been 
provided to disallow recomputation or to cause recomputation 
over only limited portions of the spreadsheet. Judicious use of this 
facility can greatly enhance the speed of calculation. The use of 
this facility requires some sophistication in determining just how it 
works and implementing it properly. Another problem is the lack 
of true indirect addressing (as used in a Fortran subroutine~ This 
makes reuse of code somewhat cumbersome. 

Another rather specialized problem was inherent to this 
particular study. As was noted above, there are four complicated 
functions that require an iterative method to extract the four 
unknowns. The Newton-Raphson method was used to solve for 
the four unknowns and was implemented as a spreadsheet 
"macro." This worked relatively well and addressed the problem 
of preventing recalculation of the whole spreadsheet at each step 
since recalculation is disabled during macro execution. The 
Newton-Raphson method has a few peculiarities of its own. In his 
book, The Mathematical TounSt[ 10), Ivars Peterson describes an 
area of instability in the solution space of the Newton-Raphson 
method that will not produce a solution at all. We found it 
necessary to take a small fraction of the full correction step to 
guarantee stability in the method. 

The maximum electric field that can be achieved on the RFQ 
vanes without sparking is determined by a fixed multiple of the 
Kilpatrick relationship[ll) (with present vacuum and surface 
preparation techniques, we can generally design for electric fields 
that are twice this criterion~ This relationship is such that a 
straight-forward solution is not possible. A specialized macro was 
built to compute the value of the Kilpatrick field given the 
frequency. The relationship between the two variables, frequency 

and Kilpatrick field (EKP ) is as folloM: 

-8.S 

freq = 1.643El,.eEKP 
Knowing the largest field and the smallest field that is possible and 
the frequencies that correspond to these fields, it is a rather 
straight-forward use of the method of bisection to find the field, 
given the frequency. A macro was implemented to use the 
bisection method to solve this problem. 

Figure 1. ShOM the user interface to the spreadsheet. Each of 
the items at the top is a command to the spreadsheet. The first 
item, DATA, is highlighted as indicated by the heavy box around it . 
On the spreadsheet, this means that this item is selected. When a 
command is selected an explanitory line appears just below. In this 
case it says, "Enter New Data" indicating that we are in a data 
entry mode. This form of instruction is also part of the standard 
spreadsheet capability. The other commands indicate what the 
spreadsheet will do. For example, I/SISIM indicates that a 
calculation allowing beam current (I), the two sigmas (SIS), and 
the vane modulation factor (M) to be the freely varying 
parameters is selected. Look alloM the user to examine the 
spreadsheet at any location to which he wants to move, Print 
provides for printing the third column of the spreadsheet that 
contains all the useful numbers, and Quit terminates the 
spreadsheet. Selection is made by use of the arrow keys. 

Conclusions 

The use of a spreadsheet for the kind of calculation that is 
described above seems to have more advantages than 

I DATA IVS/S/M F/S/S/M E/S/S/M Look Print QUI 

Enter New Data 

DATA ENTRY FORM 

~ass(ev) 
Charge No. (= 1 for P) 
Current(amps) 
Emit(tot norm pi-m-rad) 
EmaxlK field ratio 
F Enhance fac (1.3-1.4) 
Sync Phase(deg) 
Frequency(Hz) 
mu-t 
mu-I 
min vane/max beam 

9.38E+08 
1 

0.125 
1.00E-06 

2 
1.3 

-85 
5.05e+ 08 

0.8 
0.8 
1.2 

Figure 1. Spreadsheet Data Entry Screen 

disadvantages. We have demonstrated that rather complex 
calculations can be performed in this environment. The 
spreadsheet provides facilities that allow the implementor to put 
together quickly user-friendly screens that are intuitive to use. 
Facilities to gather and plot data are also provided and easy to use. 
This alloM one to do studies of parameter interactions. Thus, 
design calculations can be done on inexpensive hardware that is, at 
least in principle, portable. The calculations are accurate enough 
also to provide real cost figures. One can corne very close to the 
true price of an RFQ that will perform to given specifications using 
an easy-ta-use, inexpensive platform. The down-side of this is, of 
course, speed. One has to be patient while the calculation is being 
performed. 
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