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Abstract 

An Induction Linac accelerating high ion currents at sub
relativistic energies is predicted to exhibit unstable growth of 
current. fluctua.tions at low frequencies. The instability is driven 
by tJ.1e 1Ote~actlon between the beam and complex impedance of 
the 1Oductlon modules. In general, the detailed form of the 
growing disturbance depends on the initial perturbation and ratio 
of pul~e length to accelerator length, as well as the specific form 
of the rrnpedance. An asymptotic analysis of the several regimes 
of interest is presented. 

Linac Model 

. We treat a cluster of beams drifting at velocity v, with 
lme charge density A and current 1= AV. It is assumed here 
that all the bearnlets (N - 16) effectively act in concert so that 
A and I. ru:e the tot~ valu~s an~ v is the common velocity. 
The c.onUnUlty equation, wntten 10 laboratory frame quantities 
(z,t) IS: 

aA aI 
-+-=0 . (I) 
at az 

A smoothed longitudinal field E, induced by interaction of I 
with the induction modules, acts on v: 

av av qe 
;; + v az = mE. (2) 

In general E is related to I through an impedance 

E(ro) = -Zero) I(ro) . (3) 

However in the present study the low frequency interaction is 
modeled as that of a resistance R and capacity C in parallel. 
We may use the circuit representation: 

E aE I -+-=--
RC at C 

. 
(4) 

. Most pre~ous related work<I) has neglected the capacity, 
but 10cluded a dIrect space-charge force proportional to a)Jaz 
The pre~ent model appears to be more representative at low 
frequ~ncles for the Heavy Ion Fusion application. In general the 
ca~aclty reduces ~owth r.ates compared with the case of pure 
resIstance by lowenng the rrnpedance as frequency increases. 

A perturbation analysis is carried out for small variations 
from constant equilibrium values. For: 

v = Vo + ov, 

A = Ao + OA , 

1= 10 + 01, 

E=oE, 

the perturbed equations are: 

* 

01 = AoOv + VOOA, (5) 
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aOA + aOI = 0 , 

at az 

aov + v aov = qe OE 
at az m ' 

~ aOE_ & 
RC +a;-- C . 

(6) 

(7) 

(8) 

The values of R and C are related to beam parameters 
by considerations of system efficiency. For a good match of 
source to beam load, R must not be too different from the 
matched value Ro = Gllo , where G is the average accelerating 
gradient. For the typical parameters G = I ()6 voltslm and 10 = 
1000 amp, we have Ro = 1000 aim. In this case R could be 
reduced to 300 aim without serious loss of efficiency. The 
characteristic time RC;: a-I should be a small fraction of the 
pulse length to avoid excessive energy flow in charging the 
accelerating gaps. For the typical value C = 3 x10 -10 F-m, we 
have RC = 90 ns, which is short compared with a typical 500 
ns pulse length. 

In this simple model, time scales with RC = a-I, where 
the "retarded time" variable 't = t - z/vo is used. A second 
scale quantity 

K =~ qeA.., 
mVo2C 

appears in the theory and scales the variable z. That is, a't and 
Kz appear in a dimensionless formulation of Eqs. (5-8). 

Perturbation Analysis 

If we neglect the self-force from space charge, 
proportional to a').Jaz, the coupled equations for perturbed field 
and current are conveniently written using z and the retarded 
time 't = t - zlvo as independent variables. We have 

(9) 

(10) 

Initial conditions on 01 are specified at z = 0 for 't ~ 0; in this 
model no disturbance is able to propagate backwards into the 
zones, 't < 0 or z < O. If the initial perturbation is a time
dependent velocity error generated at z = 0, the initiall 'Jnditions 
are: 

OI( o,'t) = 0 , 

OE(z,o) = 0 , 

i. S:I( ) = f( ) _ & aOv(o,'t) 
u O,'t - 't - v . 

az 0 at (II) 

The solution is now found with the aid of a Laplace 
transfonnation in z: 

(SI,BE) = Loo dz exp(jQz) (OI,OE) . (12) 
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Equations (9) and (10) yield 

(13) 

(14) 

with inversion fonnula 

f
+OO 

(oum)= -00 ~exp(-iQz)(Oi,OE). (15) 

The inversion contour runs above any singularities in the 
complex n plane. 

It is instructive to examine the case of an impulsive 
perturbation f(t) resulting from a velocity step of amplitude 
AvoI-!(t-to); from Eq. (11): 

Then Eq. (13) gives 

C15E = AA..,H( t-to) exp [-~ (t-tol] . 
n2_K2 n 2_K2 (16) 

The inversion may be written 

where we have defined 
2 

. un (t-to) 
g(n,t,z) = -lnZ - (18) 

n 2_K2 

The function [Eq. (17)] has been evaluated analytically for 
positive (t,z), and may be regarded as a Green's function for 
general f(to). However, its complicated fonn does not give.a 
qualitative description of the pattern of growth with z and t. The 
saddle point analysis presented here, while inexact, does provide 
this picture in several regimes of (z,t). We set to = 0 in the 
following. 

Note that there are poles in Eq. (17) on the real axis at 
n = ± K. These points are intrinsic singularities since the poles 
also appear in g. These singularities are associated with 
"mountain ranges" containing saddle points as displayed in 
Figs. 1 and 2. An asymptotic evaluation of oE may be per
formed by the standard path of steepest descent method applied 
around the these points. 

Saddle Pojnt Analysjs 

The stationary (saddle) points of g(n) are the four 
solutions (ns) of the quartic equation 

In general, two solutions lie in the lower half-plane and make 
little contribution to 01. The pair in the upper half-plane are 
found to be pure imaginary for ~;: Ut/Kz > 8/(3:";3) and 
complex for ~ < 8/(3--13) (see Figs. 1 and 2). 

I."'" 

Oritinel 

-------*+1'----=--' - -

Fig 1. Topography of the n' plane (n' = Q/K) for 
Ut/Kz> 8/(3--13). 
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Fig 2. Topography of the n' plane for ut/Kz < 8/(3--13). 

Denoting ns = K('V+ill), we have the parameterization 
in terms of 11: 

~ > 8/(3--13), 11 > 1/--13 , 

~ = (1l2+1f/21l ' (20) 

Inversion contour is horizontal through the upper saddle. 
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~ < 8/(3-V3), Jl < 183 , 

~=4Jl2~ , 

\jf = ± [Jl2 + 1 _ 2Jl~I/2 , (21) 

Inversion contour is oblique through each saddle point. 

The special case of ~ = 8/(3-V3) has the upper half plane 
saddles coalesce at Jl = 1/-V3. 

Case of ~« 1 

. Here the saddles lie close to the singularities 12 = ± K. 
Physically, Z IS large enough that resonant growth can dominate 
at small 'to The quartic for 12s is readily solved by iteration 
from these values to obtain 

12s ~ ± K{ 1 ± 1 ;i ~) 

gs ~ ± iKJ 1-~) + 't"KW:t - .1 a't 4 . 

Case of ~» 1 

From Eq. (20) we have 

.3.. 1/3 gs ~ 2 (2M Kz - a't 

(22) 

(23 ) 

The expected result that the RC decay should dominate at large 't 
appears explicitly. 

Maximum Growth with z 

If z is fixed and the real part of g is maximum in 't 
we find a point of the class 2-type ~ = (a't/Kz) < 8/(3-V3): 

Jl = k = .3535 , 

\jf = ± VI = ± .6124 , 

~~ = 4~ = .5303 , 

Re (gs) = 2~ = .3536 Kz . (24 ) 

This solution represents the peak. of a wave packet moving 
backward in the pulse (increasing 't) and forward in z with 
trajectory a't/Kz = .5303. The same result is obtained by 
perturbing the beam sinusoidally at z = 0 for a long duration 
('t), with frequency roo = a./-v3. 

Aoplication to HeaVY Ion Fysion Driyer 

The maximum growth is calculated here at a medium 
energy point in a fusion driver, with ion parameters (T = 1000 
MeV, m = 200 amu, q = 1). We also adopt the previously given 
quantities (C = 3 x 10- 10 F-m, R = 3OO12/m, 10 = 103 A, 'tp = 
500 ns). Then we have (non-relativistic calculation). 

vo =.104c, Ao = 32.2 JlC/m , 

a-I = 90.0 ns, K = 7.33 x 10.3 m- I , 

a't = 5.56 't/'tp , Kz = 7.33 Zkm , 

~ = a't/Kz = .758 ~~ . 

From eqs. (24) we have the maximum growth point for a 
perturbation initiated at the pulse head: 

't/'tp _...5.3.Q.3.. _ 
Zkm - .758 - .699 , 

Re (gs) = .3536 Kz = 2.59 Zkm . 

It is clear that this asymptotic limit is available within the 
500 ns pulse length for z out to -1.4 km, and several e-fold 
of growth can occur over this distance. The growth rate is 
small enough that it may be possible to control it with a feed
forward system. Note that this maximum growth rate, when 
associated with a perturbation of constant frequency at z = 0, 
occurs at 

Yo=~= 1.02 MHz , 

which is very low considering the 500 ns pulse length. For. 
the more reasonable Yo = 10 MHz we find the very low growth 
rate with distance of .636 km-I. 
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