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Abstract 

An analytic model of cumulative beam breakup has been 
developed which is applicable to both low-velocity ion and high
energy electron linear accelerators. The model includes arbitrary 
velocity, acceleration, focusing, initial conditions, beam-cavity 
resonances, and variable cavity geometry and spacing along the 
accelerator. The model involves a "continuum approximation" 
in which the transverse kicks in momentum imparted by the 
cavities are smoothed over the length of the linac. The resulting 
equation of transverse motion is solved via the WKBJ method. 
Specific examples are discussed which correspond to limiting 
cases of the solution. 

Introduction 

In the usual treatment of cumulative beam breakup (BBU), 
the cavities which comprise the linac are considered to have 
negligible length and to be the only source of deflecting fields. 
In addition, a "continuum approximation" is also commonly 
invoked in which the discrete kicks in transverse momentum 
imparted by the cavities are considered to be smoothed along 
the linac. With this approximation, the equation of transverse 
motion of the beam is: 

[ty d~ (Py d~) + (kT~)21~(a,O = 

e(a) fo'dC'W(C-n F(C') ~ (a, C') , 
(1 ) 

Here, Band y have their usual meanings; o=s/(j is a 
dimensionless spatial variable defined in terms of position along 
the linac, s, and the total length of the linac, (j; C=<u(t-fds/Bc) 
is the time, made dimensionless by use of the angular frequency 
<u of the deflecting mode, measured after the arrival of the head 
of the beam at s; kT is the net transverse focusing wavenumber; 
~ is the transverse displacement of the beam centroid from the 
axis; and F(C)=I(C)/<I> is the form factor for the current 
defined in terms of the beam current I(C) and average beam 
current < I >. E (0), a dimenSionless quantity which represents 
the strength of the BBU interaction, is given by 

e ( a) = 1. < I> Z e .I ~, 
2 P <u L 

(2) 

a product of quantities describing the beam, cavities, and linac 
in which Ze and p are the charge and momentum, respectively, 
of a constituent particle of the beam, and L is the spacing 
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between neighboring cavities. w(C) is a dimensionless "wake 
function" given by 

w(O = e-C/ 2osin( for (<:0 (3) 
= 0 otherwise, 

in which 0 is the quality factor of the deflecting mode under 
consideration. r, a geometry factor, is given by 

r = 2 

2 

f., . fA aEz (0,0, Z) d 
e-~c.Jz .... c z 

o ax (4) 
f vE2 (x) c:bc 

in which the integrals are over the rf electric field of the 
deflecting mode, and EO is the permittivity of free space. 

Equation (1) is the foundation of the theory of cumulative 
beam breakup. Various forms of it have been solved 
analytically. Early investigators treated the case of a dc beam 
with no net transverse focusing both for B=1 1 and for B .. 12, as 
well as the case of a focused relativistic dc beam. 3 These 
investigators developed approximate analytic solutions derived 
from a technique in which a Fourier or Laplace transform is 
applied to the equation of transverse motion, the transformed 
equation is integrated via the WKBJ method, and the 
transformation is inverted using the method of steepest descent. 
Later investigators applied this technique to the problem of 
relativistiC, bunched electron beams. Both single-bunch4 and 
multi-bunch5-8 BBU have been considered, and the technique 
has been shown to give analytic results which agree very well 
with numerical integration where BBU is significant.7,8 The 
analytic solution can be decomposed into a steady-state term 
valid after times long compared to O/<u, and a transient term 
describing the approach to stead~ state. These features also 
apply to the case of a dc beam, 1, ,9 for which the exponential 
growth characterizing the transient behavior can also be 
predicted by assuming at the outset an oscillatory solution of the 
form exp(i<ut-ikz).1 0 

The principal qualitative distinction of the solution for a 
bunched beam versus that of a dc beam is the possibility for 
resonance between the deflecting-mode frequency and the 
bunch frequency. This resonance will determine whether the 
steady-state displacement grows exponentially along the linac. 
While the transient solution sets the most stringent constraint in 
high energy, short pulse length linacs such as linear colliders, 11 
in cw linacs transient growth can be controlled,12 and BBU 
behavior will then be set by the steady-state solution. 

Beam breakup has yet to be investigated for a bunched 
beam of arbitrary B. This problem is important in the context of 
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the development of cw, high-current Ion linacs. An effort is 
underway to apply rf superconductivity to the development of 
these accelerators.13 Because their constituent cavities will be 
short and independently phased, cumulative BBU is expected to 
be the dominant transverse instability, and it needs to be 
considered prior to the design of these linacs. 

In this paper, we calculate the transverse behavior of a beam 
of arbitrary 8(u) consisting of delta-function bunches in a linac 
with smoothly varying parameters. Two limiting cases are 
conSidered, one with no focusing and no acceleration, and the 
other with strong solenoidal focusing and a linear acceleration 
profile. The results for these cases are applied elsewhere to two 
conceptual low-8 superconducting linacs.13 

Beam Breakup with Delta-Function Bunches 

With x{a, () '" v1JY~ {a, (), eq. (1) becomes 

where 

~(a) 
2y (Py) 2 (d2 y/da 2 ) - (y2+2) (ely/da) 2 

4(jiy)' 

(5) 

(6) 

We consider a beam consisting of delta-function bunches of 
identical charge separated by period T. According to eq. (5), 
the displacement xM of bunch M is governed by 

M-l 

[~(a) - (kT$£) 2] xN{a) = e (a) WtL WN-m X m' (7) 
moO 

where Wk = e-lo.>t/2Q sinkwt. We solve this equation using 

the following Fourier series:5 

X{a ,8);: t xm{a) e lmB ; xN{a) =...!... fre d8e-1NeX{a, 8) . (8) 
moO 21t -re 

After transformation, eq. (7) governs X(u,8) in the manner: 

(9) 

where 8';: 6 + i (wt/2Q), and 

q2{a,8') =-21e {a) wtsinwt +~(a)-[k$£P.(10) 
cos8' - COSWt T 

In terms of the functions 

{C{a,6')} = /q(O,O') {C<,>Sh}J.°q(a' 6') do' (11) 
S{a,8') V q{a,6') s~nh 0 ' , 

the WKBJ solution of eq. (9) is 

-
x{a,6) =C(a,8'),Lx .. {o)e lme 

moO (12) 
S{a,6') i- dxm(O) lme 

+ 6' L.J e. q{O, ).,..0 da 

In turn, after some manipulation which is aided by noting that 
the Fourier series for C(u,8') and S(u,8')/q(O,8') contain 
only non-negative indices m, xM(u) can be written in the form 14 

(13) 
S{a,8) ] 
q{O,8) . 

Equation (13) allows for the incorporation of arbitrary initial 
conditions for the transverse motion of each beam bunch upon 
entry into the linac. In what follows, we shall consider only the 
case of a "misaligned beam" in which ~M(O,O)=~o and 
d~M(O,O)/do=O for every M. For this case, eq. (13) yields for 
the steady-state behavior (M .... co) 

~_(o) = ~o:S:{a,iwt/2Q), (14) 

and for the approach to steady state (M < co), 

(15) 

where 

3 (a,6) = ji{O)y(O) [C(a,6)+ ely(O)/da S(a,8)]. (16) 
ji{o)y(o) 2ji'(O)y{O) q(o,8) 

The integral in eq. (15) can be estimated by steepest descent. 
Two cases, the coasting beam with no focusing and the 
nonrelativistic accelerated beam with strong solenoidal focusing, 
will be considered. We now calculate the transverse 
displacement at the end of the linac (u= 1) for these cases. 

Coasting Beam, No Focusing. For this case, 8 and yare 
constants, and both ~ and kT are zero. If the linac is comprised 
of N identical, equally spaced cavities, then € (0) is also a 
constant. From eq. (14), the steady-state displacement is 

~_(N) = ~oCOSh[ N e:t( ~rp{Wt)], (17) 

in which P(WT) includes the resonances between the 
frequencies 1/T of the accelerating mode and w/21r of the 
deflecting mode:6 

sinwt (18) 
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From eq. (15), steepest descent gives for the approach to 
steady state 

y'Eex~ l:!1E- MW,) 
~N(}n - ~_(N) - -~o 4 2Q 

4M167t[Sinh2( ~~) + Sin2( ~,)] (19) 

'" * [(COSWt -e 2Q)Cost +sinwtsin+l, 

where 

1.E + ~ -Mwt. 
4 12 

Accelerated Beam, Strong Solenoidal Focusing. For an 
accelerated beam with solenoidal focusing, the net focusing is, 
including radial defocusing from the accelerating gradient but 
ignoring defocusing due to space charge, 

k 2 = (ZeB)2 + 11: ZeEoTsintp = k 2 + k 2 (20) 
T 2p pc Ao (lJy) 2 BE' 

where B is the magnetic field in the solenoids, Eo Tcost is the 
real·estate accelerating gradient, and Ao is the rf wavelength of 
the accelerating mode. We shall consider a nonrelativistic beam 
for which y-1 and which is being accelerated slowly enough 
and focused strongly enough that the first term in eq. (20) 
predominates. If B is sufficiently large and is uniform along the 
linac, then kr 2 - kB 2 > ¢J/sl, and kr oc 1/B. Assuming the 
cavities have longitudinal dimensions scaling linearly with Band 
are spaced in the manner L = Lo[B/B(O)] = 2BAo' the geomet\l' 
factor r is the same for each cavity, and therefore f oc1/B . 
With these assumptions, the steady-state displacement is 

(21) 

and the approach to steady state is 

y'EevnlE- MWT:) 
~N(N) -~_(N) - -~o -:J 20 

8Mv'2Tt[Sinh2( ~~) + sin2( ~,)] (22) 
r.>t 

* [(COSWt -e 20) cos+ + sinwtsinljl], 

where 

L 
E = e (0) w, 0 NM, and ljI = NkB(O) Lo -Mwt. 

kB(O) ~2 

Summary and Conclusions 

Cumulative beam breakup in radio-frequency ion 
accelerators has been calculated using, as a model, a beam of 
delta-function bunches. As examples, the limiting cases of a 
coasting beam with no focusing and a nonrelativistic, slowly 

accelerated beam with strong solenoidal focusing were 
delineated. These cases are used in Ref. 13 for applications to 
conceptual designs of high-current ion accelerators. 

Limits on the Q of the deflecting mode required to control 
BBU would be larger than that inferred from these calculations 
if a more realistic set of assumptions were used. For example, 
the cavities will carry a distribution of deflecting-mode 
frequencies due to construction tolerances, and this suppresses 
BBU.15,16 In addition, the transient growth of BBU can be 
controlled by smoothly varying the charge per bunch.12 

Beams in low-velocity linacs are comprised of bunches of 
nonzero length, a property not included here. Bunch length will 
be most important in the consideration of high-frequency cavity 
modes because a given bunch will then fill a large fraction of the 
rf period of the mode. This will, for example, modify the beam
cavity resonance. Using Fourier transforms rather than Fourier 
series to solve eq. (1), we have developed a formalism both to 
include nonzero bunch length and to calculate the behavior of 
test particles constituting a longitudinal halo between bunches. 
It will be discussed in future papers. The results reported here 
are accurate for deflecting modes of low frequency in which a 
given bunch fills a small fraction of the rf period of the mode. 
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