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ABSTRACT 

It is often advantageous to describe a particle beam by 
the moments of its phase-space distribution. This paper 
relates original work by Sacherer to presently-used linear 
design codes like TRACE3D and to some recent results. 

INTRODUCTION 

Beam behavior is often better described by the evo
lution of the phase-space distribution rather than by the 
single-particle motion. Consider a periodic beamline. It 
transports a matched beam with no change in the dis
tribution. But the usual (single-particle) transfer maps 
contain a large number of entries (aberration coefficients) 
related to the complicated motion of the individual par
ticles that obscure the simple nature of the evolution of 
the matched distribution. One way to describe a beam 
in terms of the phase-space distribution is by moments of 
this distribution. Such a description has two important 
features. First, the moments are closely related to ob
servables such as beam positions (first moments) and sizes 
(second moments). Second, the moment approach is useful 
in simulations because only a small number of moments is 
required to describe a beam accurately to high order, a 
feature especially important in 3-D situations. 

In 1971, Sacherer1 presented his results based on the 
second-order moment equations, extending previous work 
on envelope equations by Kapchinsky and Vladimirsky2. 

Linear design codes like TRACE3D3 make use of these re
sults. Later, Paul Channell4 proposed using the moment 
equations to higher order as the basis of a simulation code. 
Such a code was developed at Los Alamos5 . Recent work 
on the moment description has led to more useful design 
and simulation tools, including a new version of BEDLAM6. 

The new BEDLAM code promises to be an efficient way to 
do 3-D problems involving space charge, without sacrific
ing accuracy or consuming huge amounts of computer time 
computing the 3-D effects. 

SACHERER'S RESULTS 

The original work of Sacherer1 on the rms envelope 
equation was a second-order moment calculation, which 
corresponds to the effects of first-order (linear) forces. Let 
us redo his calculation using our present moment notation. 
For simplicity, we will do this for one degree of freedom. 
There are three second-order moment equations. 
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\Ve can eliminate <p2> in favor of f rms , the rms emit
tance, which is the following function of second moments 

Assume the rms emittance is a known function of time. 
This reduces the number of equations from three to two: 
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If we least-squares fit the force F to a linear function of x, 
F = kx, the force constant k turns out to be <xF>/<x2>. 
Thus the last term in the second moment equation above 
can be written as k<x2>. Therefore, the evolution of the 
second moments depends only on the linear part of the 
force, determined by least-squares fi tting. 

Now assume that the force is composed of a linear ex
ternal focusing force and an arbitrary space-charge force. 

Then the moment equations become 
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where the space-charge force constant is given by 

k _ <xFsc > 
u - <x2> . 

(-1 ) 

(5) 

(Ci) 

Equation 5, which is a system of two first-order equa
tions, is equivalent to the single second-order equation for 
the rms envelope given in Sacherer's paper. Sacherer has 
shown that the space-charge force constant ksc is given by 

k _ const. 
u - <X2>1/2' (7) 

where the constant is almost independent of the shape of 
the charge distribution. lIe did this by computing the con
stant for uniform, parabolic, Ga lIssian, and hollow (:r2 x 
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Gaussian) distributions. Thus we can use any convenient 
model to compute ksc , without regard to the particular 
charge distribution under consideration. 

THE TRACE3D CODE 
The equations above assumed the rms emittance to be 

a known function of time; often we just assume it to be 
constant. This is a very reasonable assumption for the 
usual application of Sacherer's results, which is found in 
design codes like TRACE3D3 . These codes are used to de
sign beamlines. While emittance growth could in gen
eral be substantial, final designs, for which the beam is 
matched to the beamline, usually will not experience sig
nificant emittance growth and thus be accurately described 
by the Sacherer model. 

Sacherer presented results also for three degrees of 
freedom1 . For this situation, the rms emittances are 
not conserved, even for purely linear forces. The mo
ment invariants, described below, are the conserved quan
tities. TRACE3D handles this situation correctly because 
it evolves the O'-matrix, which is a description in terms of 
the 21 second moments that exist for 3 degrees of freedom. 

Since the space-charge force constant is nearly inde
pendent of the distribution details, we can use any "equiv
alent" beam to represent the actual beam. Here, "equiva
lent" means having the same second spatial moments. It 
would be convenient to take some simple equivalent beam 
for which we can solve the equations of motion and watch 
the behavior of its second moments, which should be close 
to those of the beam we are trying to simulate. But there is 
no beam that we know how to solve. If we assume a beam 
initially uniform in (x,y,z), then after one time step, it is 
no longer uniform. There is no such thing as a TRACE3D 
model distribution. What happens is that, at each time 
step, the space-charge force constant is computed from the 
second spatial moments, assuming a uniform charge den
sity in a (x,y,z) ellipsoid. Though we do not assume that 
an initially uniform beam stays uniform and though we do 
not know what the distribution is like in detail, because of 
Sacherer's result we do not caret. 

Given our present knowledge, it appears that the 
physics of TRACE3D is as good as it can be for a linear
force (second moments) model. Unfortunately, there is no 
way to directly compare TRACE3D or other similar linear 
code with a particle simulation. 

OTHER MOMENT RESULTS 
The rms emittance is a function of second moments 

that is conserved in systems with linear forces having 

t Appendix 0 of the TRACE30 manual discusses a 6-0 distribution 
with ellipsoidal syrrunetry that is uniform in all 3-D projections. The 
rms ernittances of this distribution are shown to be one-fifth of the 
total ernittances. No such distribution exists. But this is not a 
problem as the existence of such a distribution is not used in any 
way by TRACE30. All that matters is that <x2> is one-fifth of the 
maximum x2 value for an ellipsoidal distribution uniform in (x,y,z). 
So we must scale all rms coordinates by .,f5 when presenting data to 
TRACE30, which is what the manual instructs. 

one degree of freedom. Recently, a whole family of func
tions of moments were discovered to be invariant for lin
ear motion in systems with one, two, and three degrees of 
freedom 7, 8, 9, 10. These moment invariants are conserved 
for linear motion, even in the presense of coupling. For 
example, the following is an invariant that is a function of 
second moments and is valid for two degrees of freedom. 

<x2><p;,> - <xPx>2 

+ <y2><p~> _ <YPy>2 (8) 

+ 2<xy><pxPy> - 2<xpy><Y]Jx> 

This is the sum of the squares of the rms emittances in the 
two directions plus a coupling term. There is another in
dependent invariant that is a function of second moments. 
For three degrees of freedom, there are three invariants. 
There are also invariants that are functions of higher mo
ments. For example, the following invariant is a quadratic 
function of fourth moments for one degree of freedom. 

The moment invariants can be used as diagnostics in 
simulation codes. This is done by computing the invari
ants at each time step and observing where they begin 
to change. Changes indicate the presence of nonlinear ef
fects. Rms emittances are not useful indicators of nonlin
ear effects in systems with bends, for example, because the 
emittances can change from from longitudinal-transverse 
coupling as well. We observe rms emittance growth inside 
the bend. The emittances are restored to nearly their ini
tial values at the end of the bend, if the bend is achromatic. 
The source of any unrecoverable emittance growth can be 
readily seen by examining where the growth of the moment 
invariant occurred. This technique has been applied to 
PARMILA simulations for beamlines containing skew bends 
in which the coordinate rotations introduce rms emittance 
growth that is not present at the end of the beamline 11. 

There exists a simple algorithm for numerically comput
ing the second-moment invariants9 , which is useful for such 
applications. 

THE MOMENT CODE BEDLAM 

The original BEDLAM code numerically integrated the 
moment equations, using a collection of initial moments 
as the initial conditions. This code suffered from an in
stability problem that prevented the simulation of systems 
more than a few focusing periods long. We could not use a 
symplectic integrator to achieve stability because the mo
ment equations cannot be put into the form of Hamilton's 
equations. An important recent result was the discovery 
that the moment equations can be put into a Hamilto
nian formulation 12 using a generalization of the Poisson
bracket formulation. This work led to the development 
of Lie-Poisson integrators l3, 14 that preserve the bracket 
structure exactly, achieving numerical stability analogous 
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Fig. 1. Data flow at the top level for a BEDLAM simula
tion. Rectangular boxes indicate data files and boxes with 
rounded corners indicate processes that transform data. 

to that provided by symplectic integration. The new BED
LAM code6 uses Lie-Poisson integration. (Also, the new 
code has an improved space-charge model.) 

Because of restrictions imposed by the Lie-Poisson in
tegrator, the first moments (beam centroids) are handled 
separately in the new BEDLAM. Figure 1 shows the data 
flow for a BEDLAM simulation. We need a separate "cen
troid code" to compute the first moments and generate the 
external-force expansion used by the actual BEDLAM code. 
The centroid code provides the user interface. Various ex
isting particle codes could be modified to be centroid codes 
for BEDLAM. Since the centroid motion is not affected by 
space charge (to good approximation) all we need of the 
centroid code is to trace a single particle, without space 
charge and evaluate the focusing forces at the centroid par
ticle's location at each time step. BEDLAM will then do the 
difficult job of determining the high-order motion in the 
presence of 3-D space charge. 

DISCUSSION 
The moment approach is useful because moments are 

closely related to observable quantities and also simply be
cause it deals with the distribution rather than the single
particle motion. Linear design codes are based on the mo
ment work of Sacherer. New results are the discovery of 
moment invariants and the development of Lie-Poisson in
tegrators. High-order moment codes are expected to pro
vide accurate 3-D space-charge simulations. Furthermore, 
the efficiency of the moment method may mean we can 
have high-order design codes, using optimizers. 

The new BEDLAM code is almost ready for testing on 
real problems. We will soon know if the promises of 
the new approach will be realized. There is work now 
in progress that promises even more improvements. Al
ternate Lie-Poisson integrators can handle more general 
Hamiltonians. A new scheme being investigated by P.J. 
Channell and J .C. Scovel should be able to handle the first 
moments directly in the moment code. Improved moment 
simulations could use moment invariants as the dynamical 
variables, thus factoring out the linear motion. By solving 
directly for the nonlinear effects, we should be able to im
prove numerical efficiency iIi a manner that action-angle 
or amplitude-phase methods do for single-particle motion. 

The BEDLAM space-charge model contains nonlineari
ties to all orders that are truncated to the order appropri
ate to the order of the moments (linear forces for second
order moment simulations and cubic forces for fourth-order 
simulations). Therefore, a second-order BEDLAM simula
tion is not the same as a TRACE3D simulation. BEDLAM 
in its present form does not use Sacherer's idea of using 
least-squares fits to get the forces t . Testing of BEDLAM 
will quantify how useful Sacherer's idea really is. The 
high-order analog of this scheme would be (for fourth-order 
BEDLAM) to do a least-squares fit to fit the space-charge 
forces to a cubic polynomial. Some related work has al
ready been donel5 . One question to answer is: How much 
improvement would the least-squares fit bring? And can 
we do better simply by running BEDLAM to a higher order? 
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