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ABSTRACT 

We have developed a new capability to compute third 
and fifth order Lie algebraic transfer maps for a family of 
realistic multipole magnets, including dipoles. The general 
Hamiltonian is expanded symbolically to arbitrary order. 
The vector potential off axis, for a given multi pole sym
metry, is determined from the appropriate magnetic field 
gradients and their longitudinal derivatives on axis. 

Subroutines to compute the required gradients are 
available for Halbach REC quadrupoles, and for general 
multipoles, with the current distribution on a cylindrical 
surface specified by a shape function. This function can 
be supplied by the user, or selected from internal options. 

Both the reference trajectory, and the map about it 
are calculated by numerical integration through the gen
eral magnetic field, using modular G ENMAP software. 
This allows the calculation of curved reference trajecto
ries in a general dipole magnet, as well as offset refer
ence trajectories needed for misalignment tolerence stud
ies. These new calculational capabilities have been added 
to the MARYLIE Lie Algebraic beam optics design code. 

EQUATIONS OF MOTION 

In magnetic optics, the particle coordinates commonly 
used are dimensionless deviations from a reference trajec
tory, defined as the path of a selected reference particle 
through the system. The longitudinal position s of the ref
erence particle is taken as the independent variable in place 
of the time, and the deviations in time of flight (T = c~t) 
and energy (PT = -~E/poc) relative to the reference par
ticle are taken as new longitudinal coordinates. The tran
verse momenta are scaled with respect to the design parti
cle momentum: Px = Px/Po, Py = Py/Po. For convenience, 
we will often denote the vector of these new phase space 
coordinates by z== (x,Px,y,Py,T,PT)' 

When expressd in these new beam coordinates, the 
Hamiltonian turns out to be essentially the old pz 1: 

Az H=--
Bp 

PT Ax ( AtJ)2 1 + p2 - 2- _ (P __ )2 _ Py _ --<-
T fJo x Bp Bp 

(1) 

The special role of the z-component of the vector po
tential should be noted. In regions where the transverse 
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components of the vector potential vanish, the Hamilto
nian has the form of a kinetic term plus a potential Az / B p. 

Hamiltons equations of motion in beam coordinates 
may be written: 

dZa = -{H, za} == - :H: Za, 
ds 

(2) 

where the new symbol : H: denotes the "Lie operator" 
associated with the Hamiltonian. The action of this dif
ferential operator on any function f(Z) is defined by the 
Poisson bracket with the Hamiltonian: {H, J}. 

LIE ALGEBRAIC REPRESENTATION OF 
TRANSFER MAPS 

The idea of a transfer map is simply that the final state 
of a particle is some function of its initial state: zi = F( Zi). 
The transfer map can also be viewed as an operator M( s) 
that converts initial phase space coordinates (at s = 0) into 
final ones: z(s) = M(s)z(O). Hamilton's equations of mo
tion for z( s) imply corresponding formal equations of mo
tion for this operator, with the initial conditions M(O) = I, 
the identity. The equations have the form 

dM(s) = _ :H: M(s). 
ds 

(3) 

For a beamline element of length L in which the Hamil
tonian H is constant, this equation may be formally inte
grated to yield a map of the form 

M = e- L :H : (4) 

The exponential of a Lie operator is called a "Lie Trans
formation", which may be defined (for arbitrary f(Z)) by 
the usual power series for an exponential. The application 
of this Lie transform to a general function g(Z) thus takes 
the form 

e:lg = g + {J,g} + ~{J, {J,g}} +... (5) 
2 

The GENMAP 2,3 routines in MARYLIE 3.0 represent the 
map of an optical system in the "reverse factorized" form 

(6) 

w here the f m (Z) are homogeneous polynomials of order 
m. Substitution of this explicit form into the equation 
of motion of the map reduces it to a set of coupled non
linear differential equations for the Lie polynomials. The 
Hamiltonian itself, which depends on the vector potential, 

Proceedings of the Linear Accelerator Conference 1990, Albuquerque, New Mexico, USA

432



must also be Taylor expanded into a series of homogeneous 
polynomials: 

00 

H(?, s) = L H n (?, S). (7) 
n=l 

Finally, the first order behavior of the system is taken 
out by transforming to the "interaction representation" in 
which only deviations from first order motion are consid
ered. The Interaction Representation of the nth order part 
of the Hamiltonian is: 

H;' (z, s) == Hn (R(s) z, s), (8) 

where R(s) is the linear (matrix) part of the map M(s), 
whose motion is determined by H2 (s) alone. 

After all of this, the equations for hand 14 are: 

oh (z, s) _ _ HI( ) 
AS - 3 Z 'S' (9) 

8f4 (z, s) = _HI( ) ! [I ( ) oh (z, s)] 
!) 4Z,S+ 3 Z ,S, !) . 

uS 2 uS 
(10) 

These equations are further separated power by power 
into coupled non-linear differential equations for the 209 
polynomial coefficients (for m = 2, 3, and 4) that represent 
the transfer map to third order, as used by MARYLIE 3.0. 
The GENMAP routines numerically integrate these 209 
differential equations. 

The fifth order code MARYLIE 5.0 uses m = 2 through 
6, for a total of 923 equations to be integrated. The ad
ditional equations of motion for the 1m are more compli
cated, involving multiple Poisson brackets. 

REPRESENTATION OF THE VECTOR 
POTENTIAL 

Given the Fourier expansion of the scalar potential 

00 

VCr, B, z) = L Um(r, z)sin(mB), 
m=1 

a vector potential giving the same field is 

A - ~ cos(me) .Q.U ( ) 
Z L... m r or m r, z 

m=1 

A ~ cos(rnB) JLU ( ) 
r L... m r OZ m r, z . 

m=1 

(11) 

(12) 

Here we have choosen a gauge where Ae 
scalar potential off-axis may be written 

o. The 

mOO (-I)I(m-l)!(r)21(0)21 
Um(r, z) = r tt /!(l + m)! 2" oz gm(z), 

(13) 
where 

(14) 

represents the profile of the mth multipole. 

This is a general solution to Maxwell equations order 
by order, for arbitrary gm(z). The problem is thus re
duced to computing the generalized field gradients on axis 
for realistic magnet models. We report here on the imple
mentation of a family of magnet models representable by 
current sheets on a cylindrical surface. 

CURRENT SHEET MAGNETS 

Cylindrical current sheets can be used not only to rep
resent radially thin windings on a cylinder, but also to cal
culate arbitrary fields in the source-free volume bounded 
by a cylindrical surface. In the latter case, fictitious sur
face currents that produce the same interior fields as com
plicated outside sources replace them for rapid field calcu
lation. (For some simple volume field sources, it can be 
better to work directly with analytical expressions for the 
field from the source). Continuous currents on the surface 
of a cylinder of radius a can be represented by a stream 
function \fI (¢, z) of the surface coordinates as follows 4: 

. - -N Io\fl(¢, z) 
J¢ - oz' 

. Nlo\fl(¢,z) 
Jz = -;- o¢ . (15) 

The quantity N I is introduced to make \fI dimensionless. 
The above prescription produces currents that are auto
matically divergence-free. The stream function can be used 
to find a set of discrete turns that approximate a contin
uous distribution, since current streamlines are contours 
of constant \fI; to make spiral windings, successive closed 
turns are cut and transitions between them are inserted. 
The stream function can be written as a sum of Fourier 
components as follows: 

00 

\fI(¢, z) = L wm(z)sin(m¢). (16) 
m=) 

The Wm (z) are called shape functions. The m = 0 case 
is excluded here because it requires special treatment. If 
only a single m value is present in Eq.16 and the boundaries 
are rotationally symmetric, the resultant field has m-pole 
B dependence everywhere. For open boundaries, the scalar 
potential produced by the currents of Eq.15 is 

J10Nla co. r+ oo 
, 

VCr, B, z) = -7r- L szn(mB) J- wm(x)Gm(r, z, x)dx. 
m=1 -00 

(17) 
The Green's function Gm(r,z,x) has the form 

a [ 1 (a
2
+r

2
+(z_x)2)] 

Gm(r,z,x) = oa 2y'arQm-~ 2ar ' 

( 18) 
where Qm- ~ is a Legendre function of the second kind of 

2 

half-integral order. (For the closed-boundary case of a sur-
rounding cylinder of infinitely permeable material, hybrid 
series solutions containing both ordinary and hyperbolic 
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Bessel functions have been obtained). Expressions for the 
magnetic field and vector potential are easily derived from 
Eq.17. For calculation of fields, etc., the Qm_.J. are not di-

• 2 

rectly used; Instead, the 27ar factor cancels a factor in the 
hypergeometric series expression for Qm-.J.; the resultant 
expression is regular as r -- O. The gen~ralized on-axis 
gradient for a single multipole m was defined in Eq.14 . 
This limit of Eq.17 is 

Z _ 1J-0N I a(2m - I)!! 1+00 
? 

gm( ) - (m _ 1)!2m+l -00 wm(x)I\.m(z,x)dx (19) 

where 

(20) 

If Wm (x) is a piecewise continuous polynomial, ex
act analytic integration of Eq.1 9 can be done. An exact 
quadrature subroutine for polynomials of up to the 4th de
gree in Eq.19 is used to calculate gm and its z derivatives to 
arbitrary order. This routine is called by routines for shape 
functions of several types, including flattops with square 
or rounded edges, a symmetric quartic, etc. Lambertson 
coils are represented by two shape functions, the first for 
the fundamental with a given m value for the angular de
pendence, and second for the first allowable harmonic, with 
an angular dependence of 3m. The two shape functions are 
represented by a series of parabolic arcs precomputed in an 
initialization call. Finally, a user may provide a shape func
tion in the form of a set of points; these points are then 
interpolated by parabolic arcs. The above routines have 
been implemented in MARYLIE, along with a routine for 
Halbach REC quadrupoles. The implementation is quite 
flexible, allowing almost arbitrary sequences of overlapping 
elemen.ts, as well as fitting and optimization. 

EXAMPLE 

As an illustration of the new capabilities we show some 
calculations on a point-t.o-parallel telescop~ consisting of 
a quadru~ole doublet with a concentric bending dipole. 
After settIng t~e quadrl}-poles to obtain a focal point 3.0 
~ upstream with the dipole off, we turn on the bending 
dipole, and refocus the quadrupoles to compensate for the 
frInge fields of the bend. This excercises the curved ref
ere~c.e .trajectory, overlapping fringe fields, and fitting ca
pabilities of the new code . This is the description of the 
telescope in our program input language: 

initp mult 
000000 

stm mult 
2.50000000000000 

0.200000000000000 
qml mult 

1.00000000000000 
0.100000000000000 

qm2 mult 
1.00000000000000 

0.100000000000000 
int int 
8.5 1 0 0 200 0 

#lines 
point 

l*initp l*stm 

-1.000000000000000E-02 1.00000000000000 
1.00000000000000 -2.50000000000000 

-0.378358314677254 
1.00000000000000 

0.261552436692153 
1.00000000000000 

2.00000000000000 
0.500000000000000 

2.00000000000000 
3.00000000000000 

l*qml l*qm2 l*int 

Fig.l shows the effect of the uncorrected second and 
third order aberrations on the beam divergence. 

" " I' h .• r I r ,- I " ~., •. I " 
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CONCLUSION 

The significance of all this is that for the first time we 
can compute high order maps of realistic multipole ele
ments with overlapping fringe fields . Since the routines 
have been written for arbitrary m, a basis has been laid 
for realistic calculations beyond fifth order. Since the ref
erence trajectory, and the map about it are calculated by 
numerical integration through the general magnetic field, 
we can now calculate the curved reference trajectories in a 
general dipole magnet, as well as the offset reference tra
jectories needed for misalignment tolerance studies . 
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