
RF PULSE SHAPE CONTROL USI HG A RECCURENT ALGORI THM 
FOR A FEL RF-GUN CAVITY 

P.Balleyguier, R.Dei-Cas 

Commissariat a l'Energie Atomique 
Service de Physique et Techniques Nucleaires 

B.P. n° 12, 91680 Bruyeres-le-Ch~tel, FRANCE 

Abstract 

FEL application requires a very constant RF 
accelerating field during the pulse. A classical 
feedback regulation loop cannot be very efficient 
when pulse duration is just a few times longer than 
the filling time of the cavity as the loop gain 
cannot be high enough. 

For that reason, we decided to control the RF 
shape along the macropulse in a reccurent way : the 
pulse profile is corrected step by step by 
computation from the measurement of previous pulses 
and the desired shape. 

The control algorithm is given and its 
performances will be presented. 

Introduction 

In the FEL-ELSA injector cavityl, a very 
stable accelerating field is required during the 

macropulse, to achieve an energy spread in the 10-3 

range. Moreover, in order to reduce the reflected 
power during the rising and the falling edges, the 
RF pulse should be trapezoid in shape. Since the 
frequency cavi ty is 144 MHz, and the unloaded Q 
value is 28000, the field raise/fall time constant 
is about 60 ",s. Compared with the electron pulse 
duration (200 ",s), that time is not small enough to 
allow a classical analog feedback system (fig.1) to 

be efficient during the pUlse2
. 

RF 

trapezoid 
pulse 

generator 

Fig.1. Analog RF feeback loop. 

cavity 

However, if a trapezoid shaped pulse is 
injected in the RF ampl itude modulator, the 
electric field inside the cavity will not have this 
ideal time profi Ie because of effects 1 ike: 
transient response of the amplifier, cavity filling 
time, beam loading and other non-linear effects. 
The used feedforward technique consists in 
synthesizing a particular shaped pulse and in 
injecting it into the low level RF modulator, in 
such a way that the measured time profile of the 
field inside the cavity fits the ideal trapezoidal 
curve. 

Function feedback principle 

The question is now how to guess what this 
particular shape should look like. This can be done 
by a "training" technique: in a typical feedback 
loop, the demanded output value of a transformer 
(in broad sense) is compared with its actual output 
value. The difference is then filtered and sent 
back to the transformer (fig.2). Studying the 
feedback system consists then in choosing the 
filter. In the linear modelization, the filter is 
fully characterized by its complex transmission 
coefficient, at each excitation frequency. In 
direct current (zero frequency), this coefficient 
is just a real number, usually called loop gain. In 
digital loops, the most simple and usual way is to 
use an infinite impulse response filter (IIRF), 
defined by: 

output(i) = a output(i-1) + ~ input(i-1), 

where i is the reccurent indice. 

demanded 
value transformer 

Fig.2. Typical feedback loop. 

output 

value 

In our case, the principle is the same, apart 
from that the signal to be regulated is not a 
simple scalar but a function representing the pulse 
shape. This function can be seen as a mathematical 
vector, either in time or frequency domain; (from 
that point of view, the classical scalar feedback 
loop can be called a 1-D loop). Thus, the loop gain 
is no more characterized by a simple coefficient 
but by an operator ~ which will be chosen as 
linear. 

The fil ter type wi 11 be the IIRF mentionned 
above. In other words, at each step, the pulse 
shape injected in the RF modulator, represented by 
te vector e(i), will be computed from the previous 
one e(i-1), the demanded shape c, and the previous 
pulse profile s(i-1) measured inside the cavity, by 
the following formula: 

eli) = eO-1) + ~ [c - s(1-1)J. (1) 

Stability 

Classical stability criteria (Nyquist, for 
example) are helpless here because they deal with 
1-D feedback loops. So, we have to find out another 
cri terion. 
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Let us call' the transfer function of the RF 
chain, i.e.: modulator, power amplifier, cavity and 
detector . , transforms the vector e into the vector 
s . We will assume , to be linear . Eq . (1) can be 
written as : 

eO) = (J-r;:J) [eO-lll + ~ [cl. (2) 

where J is the identy operator . 

The classical fixed point theorem
3 of 

topology , says that the vectorial sequence e(i) 
wi 11 converge if the operator (J-r;:J) is a 
contraction, i . e. it reduces distances : 

Vx,Vy, II(J-~)[xl - (J-~)[ylll < Ilx-y~, (3) 

or , simply: IIJ-r;:J11 < 1. (4) 

Since the operator r;:J is fully characterized 
by its complex transmission coefficient r(w), the 
stability criterion (4) may be stated in the 
frequency domain as : for any angular frequency w, 
r(w) has to be inside a disc of radius 1 and 
centered on 1 (fig . 3). 

real 
----~~_7l-----+_----~~~--------~ axis 

W 
Fig . 3 . Stability aera for ~, operator. 

So, the operator ~ has to be chosen correlated 

wi th ,-1. In case of convergence, the I imi t vector 
s(oo) will satisfy the following equation derived 
from eq . (1): 

s(oo) = c + r, where ~[rl=O . 

The operator ~ should ideally be inversible, 
to insure the error output vector r to be nul. In 
any case, ~ has not to loose too much information. 

Beam loading can be taken into acount by the 
addition of a constant term f in the transfer 
function " representing the RF signal induced by 
the beam inside the cavity: 

s = ,[ e 1 + f = , [e l. 
1 

It has to be noticed that substituting , into' in 
1 

eq. (3) would not change it: 
perturb the loop stability, 
macropulses are repetitive. 

beam loading should not 
as long as the electron 

Choice for operator ~ 

Since' is not exactly known, one cannot just 

decide to take ~ ,-1. Let us call 1 the expected 

value for ,. With ~ = 1-1 , the stability condition 
(4) would become: 

J - ~-1 , ~ < 1, 

which would probably not be verified for every 
vector. As a matter of fact, if x is a vector for 

which 11'[ xql ~xl is very small, ~~-1 [xliii ~x~ 
would probably be very large, and a small error 

on j would certainly lead to a value of 
much larger than unity. 

A more sui table choice for ~ seems to be t~ 
(~ transposed), which is somewhat correlated with 

,-1, but has not the same drawback . The limit 
vector s(oo) will then differ from c by a vector r 

for which t~[rl=O and then , '[rl"'O . Then, a small 
error on the valuation of , would not have major 
consequence. 

Since the RF chain transfer function is 
dominated by the filling time of the cavity. , 'J 

will be represented by a simple low-pass filter ~, 
which gives, in the time domain: 

110 L exp(-k AtI.) 

k=O 

e 
j-k 

where s and e are the samples of e and s , 
j j 

respectively, and At is the sampling period. Then , 
the assumed matrix of the RF chain transfer 
function is, in the time domain: 

with a = 
Upper 

cannot be 

n 
a 

exp( -At/.). 

right zeros 

influenced by 

are 

e 
k 

o 
1 0 a a 

due to causal i ty : s 
j 

if k > J . If a pure 

delay T occurs between e and s, all the 

coefficients of ~ are translated m=T/At times in 

lower-left corner direction, giving ~'. So, the 

operator ~ may be choosen as A t1" where A is a 
coefficient to be adjusted experimentally. 

Finally, three parameters have to be adjusted 
in ~ . They may be interpreted as : feedback 
coefficient (A), low-pass filter with negative time 
response (a), and negative pure delay (m). The 
application software described later allows the 
system user to change any of these parameters at 
any time, without stopping the reccurent algorithm, 

Practical realization and results 

The scheme of the actual feedback system is 
given in fig.4. The high power amplifier consists 
of a chain of amplifiers ended by a 2 MW tetrode. 
Both acquisition and resti tut ion systems work at 
0.5 MHz sampling frequency, with about four hundred 
12-bits samples . 

A convergence check-out algorithm has been 
implemented to avoid divergence in case of sudden 
RF chain cut-off: the residual output error 
(characterized by s-c) is computed at each step; if 
it grows, the feedback algorithm is automatically 
suspended. 

In order to save time, calculations (feedback 
algorithm, convergence check-out, data curve 
display) are made on single precision integers, and 
the software was written in assembly language. This 
allowed the computer (PC AT 286 with a 10 MHz 
clock) to carry out its task in less than 30 ms . 
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Fig.4. Function feedback loop. 

Exper-iments showed that fir-st and second or-der
'discontinuit ies on the demanded shape could 
gener-ate instabi li ties: slowly gr-owing ondulat ions 
on the pulse. For- that r-eason, the demanded shape 
was smoothly designed (fig. Sa), and the output data 
(s) was smoothed after- each r-eccur-ence with a 1-2-1 
pat ter-n. Fig.5 shows exper-imental r-esul ts after- a 
few seconds, when a steady state has been achieved, 
without electr-on beam. The field amplitude 
stability (AP/2P) is about 0.3Y. in the flat par-t of 
the pulse. Fig.6 shows a pr-eliminar-y r-esult with 
30Y. beam loading. The field stabi Ii ty was about 
2.5Y.; this value should be impr-oved in the futur-e. 

Conclusion 

A quite constant RF amplitude field has been 
obtained dur-ing the pulse. Including an analog 
feedback loop for- r-egulat ing the amplifier- alone 
(which has a much shor-ter- time r-esponse than the 
cavi ty) could impr-ove the system per-for-mance. For
the moment, the limi tat ion seems to come fr-om the 
r-epr-oductibility of the electr-on macr-opulse itself. 

The next step will be to impr-ove this 
r-egulation system in a way to stabilize also the RF 
the phase whithin the pulse. 

The author-s would like to thank M.P.Tar-dy and 
his team (fr-om Thomson TTE) for- har-dwar-e 
implementation of the system. 
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Fig.5. Results without beam. 
(a) Demanded and actual power- pulses (over-laping). 

(b) Differ-ence. (c) Cor-r-esponding input pulse. 
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Fig.6. Results with 30Y. beam loading. 
(a) Demanded and actual power- pulses. 

(b) Cor-r-esponding input pulse. 

( b) 

Proceedings of the Linear Accelerator Conference 1990, Albuquerque, New Mexico, USA

501


