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Abstract 

We extend the Kroll-Yu (KY) method [1] of deter
mining the resonance parameters of single-port cavities to 
multiport cavities by substituting the determinant of the S 
matrix for the reflection coefficient used in the KY method. 
In addition, we present a method for computing the ele
ments of the S matrix in the two-port case, based upon 
the properties of cavity modes formed when the wave
guides associated with the ports are shorted. Extension 
to the n-port case is discussed. 

INTRODUCTION 

This paper is concerned with the use of computer pro
grams to determine the parameters of multiport microwave 
circuits. It is particularly addressed to the problem of de
termining Qext and the resonant frequency of waveguide 
loaded cavities, and to the problem of determining the el
ements of the S matrix. The MAFIA [2] and ARG US [3] 
programs have a built in capability of computing the el
ements of the S matrix for any user selected frequency. 
This capability is based upon solving Maxwell's equation in 
the time domain, with appropriate incoming and outgoing 
wave boundary conditions imposed at terminating planes. 
These terminating planes are located in the waveguides 
connected to the ports of the structure at sufficient dis
tance to damp out evanescent modes. The incoming wave 
is turned on smoothly at the selected frequency, and a suf
ficient number of time steps must elapse to allow the fields 
within the boundaries provided by the terminating planes 
to reach steady state. These programs, operating in a time 
independent mode, also have the capability of computing 
the frequencies and field configurations of the modes of the 
cavity formed by imposing electric or magnetic boundary 
conditions at terminating planes in the waveguides. 

The KY method provides a procedure for determining 
the resonant frequency and Qext of the modes of a cavity 
with a single matched load waveguide output, or reduce
able to a single output case by symmetry considerations. 
It is based upon the analytic properties of the reflection 
coefficient in the complex frequency plane. It requires val
ues of the reflection coefficient at four real frequencies in 
the vicinity of the resonant frequency. In the context of 
this paper, it is convenient to think of the reflection coeffi
cient as the (unique) component of the one-by-one S ma
trix suitable to the description of a one-port microwave cir
cuit. Its values can be obtained from the above referenced 
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programs operating in either the time-independent or the 
time-domain mode, but all practical applications of the 
method have made use of the time-independent mode. 
This paper is concerned with the extension of the KY 
procedure to multiport microwave circuits. In the first 
section, we show that the method applies unchanged if 
the reflection coefficient is replaced by the determinant of 
the S matrix. This recipe obviously applies to the one
port case as well, since the reflection coefficient is then the 
same as the determinant of the S matrix. In the second 
section, we address the problem of extending the time
independent method of determining the S matrix to the 
multiport case and present the progress we have achieved 
for the two-port case. It provides an alternative to the 
time-domain method and may be advantageous in certain 
circumstances. In addition, either can serve as a reliability 
check of the other. 

ANALYTIC REPRESENTATION OF THE 
S MATRIX DETERMINANT 

We begin by recalling the definition of the S ma
trix [4], assuming for simplicity of exposition that each 
waveguide propagates a single mode at frequencies of in
terest. Let aiexp[jki(w)Zi] represent the amplitude coef
ficient for the incoming wave electric field in the ith wave
guide normalized so that ~aiat is equal to the power, and 
bi exp [-jki(w)Zi] the corresponding quantity for the out
going waves (i = 1, ... , n). Here Zi represents distance along 
the ith waveguide measured from its specified reference 
plane, chosen to increase in the outgoing direction. The 
reference planes are to be specified in a way which pre
serves any symmetry present in the circuit. The matrix 
elements Sij of the S matrix are defined by the relation 

bi = Sijaj , (1) 

where all of the a's are taken to be zero except aj. The S 
matrix defined in this way is symmetric, and for a lossless 
circuit (which we assume throughout), unitary for real 
values of w. Thus Sij = Sji, and 

Si/cSicj = 8ij (summation convention assumed). (2) 

Following KY, we consider a solution of Maxwell's 
equations for complex eigenfrequency that satisfies an 
outgoing wave boundary condition for each propagating 
mode, and an evanescent wave boundary condition for all 
other modes. Writing this eigenvalue as u+ jv, we identify 
u with the resonant frequency of the waveguide loaded 
cavity and u/2v with the cavity Qext. We now consider 
the behavior of the matrix elements Sij as their argument 
approaches the value u + jv. Because the eigenfrequency 
corresponds to a situation in which there are outgoing 
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waves but no incoming waves, each 8ij must have a pole 
there. Thus in the vicinity of the eigenfrequency, we may 
write 

8ij = Pij/ (w - u - jv) + Rij , (3) 

where we take the residue matrix P and the remainder 
matrix R to be constant near the pole. Since symmetry is 
an analytic property, it will be preserved in the analytic 
continuation to the complex plane so that both P and R 
are symmetric matrices. Equation (3) strongly suggests 
that the determinant of the 8 matrix det(8) is also singular 
at w = u+ jv, perhaps even with a pole of order n. We shall 
show, however, that if the eigenmode is nondegenerate, 
then the pole in det(8) is of first order. Thus if the 
mode is nondegenerate, there is a unique field distribution 
associated with it apart from normalization. This means 
that the ratio of the outgoing wave mode amplitudes is 
independent of the way in which the mode is excited. In 
particular, if we imagine exciting the cavity by an incoming 
wave at the jth port at a frequency arbitrarily close to 
the eigenfrequency, the pole-dominated response must be 
such that the outgoing wave ratios are independent of the 
port from which the cavity is excited. Thus selecting a 
nonzero P1ej and defining Vi as the ratio of the outgoing 
wave amplitude from the ith port to that from the kth, we 
have 

Pij = Vi P1ej = ViPj1e = ViYjP1eIe . (4) 

The factorized form tells us that P is a matrix of rank 
one, and reference to the properties of matrices and 
determinants yields the result 

det(8) = Trace (P/ R) det(R)/ (w - u - jv), (5) 

which exhibits the pole as first order. Because the 8 
matrix is unitary for real values of the frequency, det(8) 
has absolute value one there and following KY we may 
represent det(8) by 

det(8) = - t -u + ~v~ exp (-2jx (w)) = - exp (2j1P) , 
w - u - JV 

(6) 
where x(w) is a real function analytic at w = u + jv. If 
one needs to deal with several poorly separated resonances 
one may replace the above by the form which exhibits 
the resonances of interest explicitly [1,5]. In applications 
of the KY method to one-port problems 1P(w) has been 
obtained by computing the resonances of the cavity formed 
by shorting the waveguide at various lengths. It is given by 
k(w)L where L is the distance between the short and the 
reference plane, and one obtains a (1P, w) pair from each 
mode for each length chosen. These pairs are then used to 
determine the resonance parameters. Such pairs could be 
used in exactly the same way for determing the parameters 
in the multiport case, but a method for obtaining them is 
required. As mentioned in the introduction, the entire 8 
matrix can be determined for any specified frequency by 
means of the time domain solutions of Maxwell's equations, 
which would provide the needed quantities. In the next 
section, we discuss the use of time independent methods 
for this purpose. 

DETERMINATION OF S MATRIX. 
PARAMETERS 

Tbe two-port case 

It is convenient to write the 8 matrix in the following 
manifestly unitary and symmetric form: 

811 = - cos (8) exp [j (4) + d4»] , (7) 

8 22 = -cos(8)exp[j(4>-d4»] , (8) 

8 12 = 8 21 = -jsin (8)exp (j4» (9) 

We define unique values for the angles without limit
ing generality by requiring -1r/2 < 8 ~ 1r/2, -1r < 4> ~ 1r, 
and -1r/2 < d4> ~ 1r/2. 

We form a cavity by shorting the waveguides at 
distances Li from the reference planes and compute a 
set of resonant modes. The incoming and outgoing 
wave amplitudes in the two waveguides, evaluated at the 
reference planes, satisfy the following relations: 

bi/ai = - exp (j21Pi) , 

ada1 = rexp [j ('1/;1 -1P2)] 

(10) 

(11) 

Here 1Pi is ki Li and r is the ratio of the incoming 
amplitude for the second port to that of the first port 
evaluated at the shorts. It is a real quantity with a 
sign which depends upon the relative sign conventions 
chosen for the fields in the two guides. It is readily 
computed from the transverse magnetic fields at the shorts, 
quantities which are available as computer printout. To 
relate r to these values it is necessary to respect the 
normalization conditions used in defining the amplitudes. 
If the two guides are identical and the fields are evaluated 
at corresponding points, then, up to a sign, r is equal to 
the field ratio. (Specification of the sign for one mode 
determines it for all.) We combine Eqs. (1) and (7) through 
(11), using algebra and trigonometry, to obtain 

tan(8)=2sin(d1P)/(r-1/r), (12) 

4> = 21P1 - ~ - d4> , 
where d1P, D, and ~ are defined by 

(13) 

d1P = 1P1 -1P2 - d¢; , (14) 

D = I~ = ~~~I Jr2 + 1/r2 - 2 cos(d1P) , (15) 

sin~=rsin(2d1P)/D, (16) 

cos~ = [rcos(d1P) -l/r]/D. (17) 

Equations (12) through (17) determine 8 and 4> in 
terms of computer provided parameters and the still to 
be determined d4>. In the case of a symmetric circuit
which is a case of great practical importance-d4> is zero, 
so that the 8 matrix is completely determined by the 
above, provided that one has chosen L1 not equal to 
L 2 • This means that from a single time-independent 
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run, one can evaluate the S matrix at the frequency of 
each mode. For cases in which 8 and ¢ vary slowly 
with frequency, one can- using interpolation-obtain the 
frequency dependence over an extended interval. We have 
found the method to be reliable and easy to use-but, for 
lack of space, applications will be reported elsewhere. 

Since all the necessary equations related to a single 
choice of shorting lengths are satisfied with arbitrary values 
of d¢, this quantity cannot be determined from a single 
run. In order to determine the S matrix of an unsymmetric 
two-port at a particular frequency, one requires two runs 
with different choice of shorting lengths, each of which 
yields a mode at that frequency, but with different absolute 
values ofr. Once one has that much information, there are 
many ways to extract the S matrix parameters. Since it 
is difficult to choose two different length pairs that give 
a mode at exactly the same frequency, it is useful to find 
a procedure that allows use of interpolation to determine 
the needed properties of one of the modes. We have been 
using the following. We use the second pair of lengths only 
to determine d¢, based on the readily derived relation 

(d¢) (r' - l/r') sin(D1P) - (r - l/r) sin(D1P')) 
tan = [(r' _ l/r') cos(D1P) - (r - l/r) cos(D1P')} . 

(18) 
Here, D1P = 1Pl - 1P2 and the primed quantities refer 

to the second pair of lengths. If the waveguides have equal 
cutoffs, Eq. (18) can be simplified by taking Li = L~, 
yielding 

d 
(r' - l/r') sin(D1P) tan ( ¢) - -;-;-:------:''--;---:,,----:---:-:::-~--'-'__:__;___;_;_ 

- [(r' - l/r') cos(D1P) - r + l/r)) 
(19) 

It is expected that D1P' and r' can be found to 
sufficient accuracy by interpolation. We have applied this 
method to a step in height of a rectangular waveguide, 
and find good agreement with the analytic formulas in 
Marcuvitz [6]. 

Tbe n-port case 

While we have little experience with the n > 2 case, 
there is one method which appears to be practical for the 
case in which all of the waveguide cutoffs are equal. It is 
based upon recognition of the fact that each mode found 
with all 1P's equal corresponds to an eigenstate of the S 
matrix. Thus, with all 1P's equal, we have from Eqs. (1) 
and (10), 

Bi,k = SijAj,k = - exp(j21P,k) Ai,k , (20) 

which is just the eigenvalue equation for the S matrix, 
with eigenvector Ai,k and eigenvalue - exp(j21P,k). Here 
we have added the index Ie because there are n distinct 
eigenvalues and eigenvectors for each frequency, and we 
have used capital letters for the mode amplitudes' to 
indicate that we choose to normalize the eigenvectors 
to unity (they form an orthonormal set). With this 
understanding, we have the following explicit expression 
for Sij: 

n 

Sij = - L:Ai,k Aj,kexp(j21P,k) . (21) 
k:::l 

The determinant of S is simply the product of the 
eigenvalues, and the sum of the 1P,k replaces 1P in the 

KY formalism. For a given Ie, the ratios of the Ai,k 
are determined from the transverse magnetic fields at the 
shorts in a manner analogous to the determination of r 
for the 2-port case. This approach is probably impractical 
if the cutoff frequencies are unequal because one does not 
know how to choose the L's to get equal 1P's. On the 
other hand, if all of the cutoff wavelengths are equal, 
one only has to choose all the L's equal. Then one 
obtains an S matrix eigenvalue and eigenvector at each 
frequency that appears in the cavity mode spectrum. To 
determine the S matrix at any particular frequency, one of 
course needs all n eigenvalues and eigenvectors. Starting 
with a particular choice of L and a particular mode, 
there are n - 1 additional L values that will give linearly 
independent modes of the same frequency. The practicality 
of the method depends upon being able to determine 
them from computations at, say, 2n intelligently chosen 
lengths, combined with the application of interpolation to 
get adequate approximations to both the L values and the 
eigenvectors. If this program is successful, one series of 
computer runs would provide the S matrix over a broad 
frequency interval. 

CONCLUDING REMARKS 

The main results of this paper are the demonstration 
that the determinant of the S matrix plays the same role 
in the determination of resonance properties of multiport 
circuits as the reflection coefficient plays for one-port 
circuits, and the development of practical methods for 
determining the S matrix for two-port circuits using time
independent computational methods. Our experience in 
applying these methods is quite limited, but a number of 
practical applications are in progress. 

One of us (NK) has profited from numerous dis
cussions of the numerical aspects of this problem with 
Kwok Ko. 
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