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Abstract 

The beam in PILAC, a superconducting linac for pions 
proposed at LAMPF, will have a larger momentum spread 
(7% dp/p) and occupy a larger transverse space (13 cm dia. 
bore) than is usual in high-beta linacs. To find the effects of 
this large phase space, a cavity element is being added to the 
MOTER code. With this addition, pions and other particles 
may be tracked through the injection line and the PILAC 
linac. In one option, the particles may be tracked cell by cell 
through a multicell cavity using formulas. The formulas are 
derived by integrating the energy gain and transverse impulse 
from the fields in a cell along the path of the particle. What 
is new in this analysis is that the transverse momentum is 
considered to be a significant part of the total momentum. 
The effect of a difference in velocity from the design velocity 
of the structure is considered. In another option still under 
development, field information is specified, and the particles 
may be tracked by stepwise integration. 

In trod uction 

We will outline our derivation of an algorithm for 
tracking charged particles through linac structures when both 
the longitudinal and transverse emittances are large. First we 
will give a simplified analytical representation for the fields 
near the linac axis. Then we will give portions of the 
analysis of the longitudinal and transverse dynamics. Finally, 
we will compare three different methods for tracking particles 
using the MOTER [1] code, and outline areas needing further 
research. 

Cavity Field Representation 

In order to represent the fields near the axis of a multi
cell superconducting cavity, we find it convenient to represent 
the longitudinal electric field E z as a sum of terms of the 

form 
nnz 

cos-
2h ' 

where n is a positive odd integer and h is half the cell length 
L. Thus E vanishes at the start and end of each cell. (This 
does not represent what happens at the entrance and exit of the 
cavity very well. We will come back to this point later.) In 
order to satisfy Maxwell's equations, a transverse magnetic 
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field with cos rot time variation and cos(D1tz/L) longitudinal 
variation has the form 

~ nnz 
Ez = £..J 2 EoTn lo(kwnr) cos rot cos- , 

n 2h 
(I) 

~ ). nnz 
Er = £..J 2 Eo T n Ywn 11 (kwnr cos rot sm- , 

n 2h 
(2) 

I~ . nnz 
Bcj) = -- £..J 2 EoTn ~wnYwn I1(kwnr) sm rot cos-, (3) 

c n 2h 

where Io and 11 are modified Bessel functions, 

Vd 
~wn= - , (4) 

nc 
- (I A2 )-0.5 Ywn - - Pwn , (5) 

ro 
~ ~= ~ 

~wnYwnc 
for cells designed to accelerate particles traveling at a velocity 
Vd, and where c is the velocity of light. (Note Vd = 2roh/n, in 
order that the particle travels two cell lengths in one rf 
period.) Eo is the average field along the axis of the cell at its 
peak in time: 

1 J h Eo = - Ez peak r=O dz . 
2h -h ' 

The factors Tn are given by 

J h nnz 
Ez peak r=O COS(-) dz 

~ , 2h 
Tn = --J-r-------

_: Ez peak, r=0 dz 

(7) 

(8) 

Note that T 1 is just the normal transit-time factor for a 
particle at the design velocity Vz = vd. 

For the cavities to be used for PILAC, the peak field 
along the axis is near to sinusoidal in z, and we find the 
values for Tn shown in Table I. 

TABLE 1 
Transit· Time Factors for PILAC Cavity 

n Tn 
1 0.7753 
3 -0.0279 
5 0.0013 

Thus the series representing the fields in these cavities 
converges rapidly. At most, we need three terms. 

Analysis of Beam Dynamics 

We begin the derivation of the beam dynamics with the 
basic equations for momentum and energy change: 
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d 
-(pc) = qc(E + v x B) , 
dt 

(9) where (20) 

rNV 
-=qE·v. 
dt 

(10) 

These equations relate the momentum pc (MeV) and kinetic 
energy W (MeV) change per unit time t to the fields E and 
cB (MV/m) for a particle with velocity v (m/s) and relative 
charge q. (For a proton or a n+, q = +1.) The relativistic 
quantities ~ and y relate the particle velocity and mass to the 
speed of light and the rest mass: v = ~c and m = ymo . 
Thus W + W 0 = yW 0 , (11) 

and pc = ~yW 0' (12) 
where W 0 is the rest energy (MeV) and ~c = v. 

1 
Since dt = - dz , (13) 

Vz 
we can write the integral form of the energy change equation 
(10) as 

j h Vx Vy 
~ W = q (-Ex + - Ey + Ez) dz . 

-h Vz Vz 
(14) 

If the components of particle velocity v x' v y' and v z change 
little in traversing one cell, then 

VOjh VOjh ~W '" q~ Ex dz+ q~ Eydz+ 
Vzi -h Vzi -h 

+ qj h Ez dz. 
-h 

(15) 

We use subscripts i and f (initial and final) to indicate 
quantities at the start and end of a cell, and c, at the center of 
the cell. It is only the final term in Eq. (15) that is usually 
used in tracking protons and the like. We will retain all three 
terms. 

We need to evaluate the components of E at the position 
of the particle and at the time that the particle is there. We 
assume V z is nearly constant over the cell, and thus for time 
given by t = z/vz + <1>/(0, we have 

(OZ 
(Ot'" - + <l>c . (16) 

Vzi 

In order to find the correct rf phase to use for a given particle, 
we consider the given particle and another particle, a reference 
particle, which is moving along the axis at the design 
velocity for the cell. The time difference for arrival at the 
center of the cell is 

vd 
t-lct=lct(--I), (17) 

Vzi 

where lct = hlvd. We may express this in terms of the rf phase 
and ~wl = vJc : 

n ~wl 
<l>c = <l>i + 2" (~zi - 1) . (18) 

W . 0 ° fnz. f e put our expressIOns m (Ot m terms 0 - lor ease 0 

integration: 
nz 

(Ot = (1 + d)- + <l>c , 
2h 

2h 

(19) 

We also assume that r remains near its value at the center of 
the cell, r c. The energy gain per unit charge in traversing a 
cell is then 

n 

vxi x vyi y 
(- - + - -) Ywn II (kwnrc) Sn(d) ] , (21) 

Vzi r vzi r 

where 

1 j h nz nnz 
Cn(d) = - cos [(1 + d)- + <l>c] cos- dz , 

h ~ Th Th 
(22) 

1 j h nz . nnz 
Sn(d) = - cos[(1 + d)- + <l>c] sm- dz . 

h -h 2h 2h 
(23) 

The integrals in Eqs. (22) and (23) may be evaluated in closed 
form. If cosine and sine terms in d are approximated by the 
first two terms of their series representation, the results for 
n=lare 

24 _n2d2 

CI(d) = cos <l>c , (24) 
24 + 12d 

24 + 24d - n2d2 - n2d3 

SI(d) = - sin <l>c . (25) 
24 + 12d 

For particles moving at the design velocity, d=O, these reduce 
to C I (0) = cos <l>c , S 1(0) = - sin <l>c, as they should. 

The new kinetic energy is then 
Wf=Wi+~W , 

so that Yf = (W f + W o)/W 0 , 

and ~f = ..!.. V (Yf - l)(Yf + 1) . 
Yf 

(26) 
(27) 

(28) 

We now wish to calculate the changes in transverse 
momentum PxC and PyC using Eq. (9). The force applied to 
the particle is proportional to E + v x B. The transverse 
part of this force is purely radial, since Ee = 0, and v x B is 
perpendicular to B, which is only in the e direction. 
Regardless of the direction of v, 

(E + v x B).. = Er - Vz Be . (29) 

n 

nnz ° nnz 
. ( cos (Ot sin- + ~z~wn sm (Ot cos-) . (30) 

2h 2h 

We assume that the change in transverse momentum is small, 
and we can then approximate the momentum change through 
the cell by applying an impulse at the center of the cell. From 
Eqs. (9), (30) and (19), we fmd 

~PrC '" L 2hq EoTn Ywn II (kwnrc) . Dn(d,~z) , (31) 
n 

with - 1 j h 1 
Dn(d,~J = - =. 

h -h ~z 

nz . nnz 
. {cos[(I+d)- +<1>] sm - + 

2h 2h 
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--. nz nnz 
+ ~z~wn sm [(1 + d)- + <1>] cos- } dz. 

2h 2h 
(32) 

In these expressions, ~ z is the average value of ~ z over the 

cell. The integral in Eq. (32) can also be found in closed 
form, provided that ~ z is assumed to be a constant. Again 

approximating sine and cosine terms in d by the first two 
terms in their series representation, we find for n= 1 that 

-- sin <l>c 24 - n2d2 --
Dl(d,~J = -~. [ (1 - ~z~wJ + 

~z 24 

48d+ 24d2 - 2n2d3 - n2d4 --
+ 2 (1 + ~z~wn) ] . (33) 

96 + 96d + 24d 
Finally, since X'i = Vxi / Vzi and Pxic = ~xiYi Wo, 

I A x 
PxfC = Xi pzi Yi Wo +-~PrC , 

r 
(34) 

am x' f = PxfC . (35) 
~zfYf Wo 

Corresponding expressions give the final momentum and 
divergence in y. 

Tests in the MOTER Code 

A cavity element is being added to the MOTER tracking 
and optimization code. The preliminary version of the cavity 
element has options for using anyone of the following: 

(a) Algorithm, assumes ~z = ~, velocity close to design. 
(b) New algorithm, ~z *- ~, velocity may differ from design. 
(c) Field integration, simplified fields. 

After some tests with the new algorithm, we found that the 
calculated trajectories differed significantly from the more 
exact trajectories found by field integration. We very recently 
extended the analysis to find the approximate offset in 
position at the end of the cell. We did this by integrating the 
transverse force up to an arbitrary point in the cell to estimate 
the change in transverse velocity at that point, and then 
integrating the velocity to find the transverse position offset. 
When offsets are introduced, care must be taken to ensure that 
the transformation from Xi , X'i to Xf , x' f is such that the 
determinant of the transformation matrix is (~ziyJ/(~zfYf). A 
similar constraint must be imposed on the y coordinates. For 
the beams we have tested so far, ~z is close to ~, and it is 
straightforward to do this. 

We generated examples of results from these methods by 
tracking a set of particles (initially 360 MeV) through five 
cavities with seven cells each. The cavities were designed for 
500 Me V particles. Some of the results for tracking an 
individual particle and for tracking particles in a K -V 
distribution are listed in Table 2. In method (b), using the 
new algorithm, only the n= 1 terms in the field expansion 
were used. Method (b) did include the new analysis for 
finding transverse position offsets. For method (c), using 
field integration, n=l, 3, and 5 terms were used, but the 
results are very nearly the same if only n= 1 terms are used. 
Using method (c) as our standard of comparison, we see that 
method (b) gives better values for all the parameters shown 

than method (a). 

TABLE 2 
Tracking Comparisons 

Method (a) 
Individual particle parameters 

Energy, MeV 416.742 
Position, x, mm 59.705 
Angle, x' 0.004836 
Position, y -0.584 
Angle, y' -0.000277 

Beam parameters 
Emittance, x 
a, x-plane 
~, x-plane 
Maximum x 
Emittance, y 
a, y-plane 
~, y-plane 
Maximum y 

Computer time, s 

200.5306 
-1.7080 
18.568 
61.020 

200.5782 
-0.5495 

9.312 
43.218 

4.54 

Method (b) 

416.508 
60.599 

0.005461 
-0.617 

-0.000282 

200.624 
-1.9363 
19.162 
62.003 

200.725 
-0.6670 

9.544 
43.769 

9.80 

Discussion and Conclusions 

Method (c) 

416.508 
60.425 

0.005420 
-0.621 

-0.000283 

200.639 
-1.9205 
19.060 
61.840 

200.753 
-0.6598 

9.477 
43.618 
873.02 

The new algorithm developed for large-emittance beams 
is a definite improvement for both the longitudinal and 
transverse dynamics for particles whose velocities differ from 
the design velocity of the structure. In order to realize the 
improvement in transverse dynamics, we found it necessary to 
go beyond what would be expected from following the path 
for a simple impulse applied at the center of the cell, and to 
find a more accurate position offset in traversing a cell. 

The simplified field expressions presented above may be 
used either to represent the mid-cell fields in superconducting 
cavities, or to serve as a test bed for evaluating different 
algorithms. We note that the fundamental component of 
these fields may be decomposed into a backward and a forward 
traveling wave. The forward wave is the main contributor to 
acceleration, and is in agreement with that presented by 
Hereward.[2] We plan to add the option for reading in more 
arbitrary fields, such as fields from the URMEL code, for use 
in MOTER. This would permit a more careful examination 
of the effects of end-cell fields, which decay exponentially into 
the adjoining beam tubes. 
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