AN APPROACH TO DESIGN OF A ROBUST FOCUSING CHANNEL

B. P. Murin, B. B. Bondarev, A. P. Durkin
Moscow Radiotechnical Institute
of the Russian Academy of Sciences
Varshavskoe shosse, 132, 113519 , Moscow, Russia

Abstract

The lorig fuadrumole chanmels were studied iri the works $[1,2]$ as well as the equations descritirig the team transverse dimensiors iricrease urider random perturhatiors. Ir present report these investigations is exterided to focusirg charinels of artatrary tyfe arud strurture.

The equation of perturtied motion may te preserited ir the following way:

$$
\begin{equation*}
x+B(x) x+f(x, z)=0 \tag{1}
\end{equation*}
$$

and $B(z)$ is the periodic furiction with a unit period.

Assuming that $x=e^{i \mu z} \cdot(a(z)+i b(z))$ is the solution of the non-perturted equation, and $a(z)$ and $b(z)$ are periodic furctions with a urite freriod, the equation (1) may be brought irito the following form:
$\left\{\begin{array}{l}r^{\prime}=p \cdot \sin (\mu z+n+\psi) \cdot f(z p \cdot \cos (\mu z+n+\psi), z) \\ r n^{\prime}=p \cdot \cos (\mu z+n+\psi) \cdot f(r p \cdot \cos (\mu z+n+\psi), z)\end{array}\right.$
where $p^{2}=a^{2}+b^{2}$ is the amplitude arid $\psi=a r c t g(b / a)$ is the phitiase of the flauleet function, μ - frequency of smooth oscillations.

Let us consider rioncolierent oscillations, in which case the equatior of particles motior may be preserited as follows:

$$
r \cdot-\tilde{G}(z) \cdot r=0
$$

Assuming $\tilde{G}(z)=G(z) \cdot(1+a(z))$ arid using the main equation of the perturted motion in the form (2), orie obtains:

$$
\left\{\begin{array}{l}
r^{\prime}=r a G p^{2} \sin ^{2}(\mu z+\eta+w) \\
\eta^{\prime}=a G p^{2} \cos ^{2}(\mu z+\eta+\psi)
\end{array}\right.
$$

with the iritial coridition r($O)=0$, $n(O)=\varphi_{0}$.

If $n(z)$ is the solution of the secorid equation, the first orie may be resolved as follows:
$\theta(z)=\frac{r(z)}{r_{0}}=$
$=$
$\exp \left(\int a G p^{2} \sin (\mu t+\eta+\psi) \cdot \cos (\mu t+\eta+\psi) d t\right)=\exp (z)$ 0
from which it is clear that the distribution of the raridom variatle $\theta(z)$ is determined ty the distritution of the raridom variable

$$
\begin{aligned}
& F(z) \text { The } F(N) \text { function may tie presented as: } \\
& \qquad F(N)=\sum_{k=1}^{N} F_{k}= \\
& \sum_{k=1}^{N} \int_{k-1} \alpha \alpha p^{2} \sin (\mu t+\eta+\psi) \cdot \cos (\mu t+n+\psi) d t
\end{aligned}
$$

while

$$
F_{k}=\sum_{i=1}^{M} \frac{t}{2} a_{i} G_{i} p_{i}^{2} \varepsilon \cdot \sin 2\left(\mu t_{i}+\eta_{i}+\psi_{i}\right)
$$

where M is the number of perturted elemerits per period, $\alpha_{i} G_{i}$ is the fielderror ir, the i-th elemerit, $t_{i}=k-1+\xi_{i}, \xi_{i}-i s$ the middle of the i-th element, $\left.\quad P_{i}=\rho<\xi_{i}\right\rangle, \quad \eta_{i}=\gamma\left\langle t_{i}\right\rangle$, $\left.\psi_{i} C \xi_{i}\right\rangle, \varepsilon$ is the element relative lerigth. CThe perturbed element mav te represerited either by a focusirig leris or by an accelerating gap).

One ottains with the accuracy up to a^{2} :

$$
\begin{aligned}
n(N)= & \varphi_{0}+\sum_{k=1}^{N} \eta_{1}=\varphi_{0}+\sum_{k=1}^{N} \int \operatorname{ago}_{k-1}^{2} \cos ^{2}\left(\mu t+\psi^{+}+\varphi_{0}\right) \\
\eta_{k} & =\sum_{i=1}^{M} \alpha_{i} G_{i} F_{i}^{2} \cos ^{2}\left(\mu t_{i}+\varphi_{0}+\psi_{i}\right)
\end{aligned}
$$

Grie mav assume the $F(z)$ variatele to have rormal distribution with the mathematical expectation $M[F]=\sum_{k=1} M\left[F_{k}\right]^{a}$ ard dispersion $D[F]=\sum_{k=1}^{N} D\left[F_{k}{ }^{j}\right.$.

Tating $F C N$ with the accuracy up to α^{3} and makirig allowance to the independerit character of the initial perturtations, one ototairs:
$M[F(N)]=M\left\{\sum_{k=1}^{N} \sum_{i=1}^{M}\left[\frac{1}{2} \cdot \alpha_{i} G_{i} f_{i}^{2} \operatorname{sinc}\left(\mu t_{i}+\varphi_{0}+\psi_{i}\right)+\right.\right.$
$\left.\left.\frac{1}{2} \cdot \sigma_{i}^{2} G_{i}^{2} \rho_{i}^{4} \cdot \operatorname{cose}\left(\mu t{ }_{i}+\phi_{0}+\psi_{i}\right) \cdot \cos ^{2}\left(\mu t_{i}+\varphi_{0}+\psi_{i}\right)\right)\right\}$
which teing average over the frequencies, multiple of μ, gives

$$
D[F(N)]=M\left[F(N)=\frac{1}{3} \bar{\alpha}^{2} G_{i}^{2} P_{i}=N \cdot \Delta^{2}\right.
$$

where $\overline{\alpha^{2}}$ is the dispersion of the initial
error.
So, the anflitude growtli of the
 particle is giventry $\theta=\frac{r(N)}{r_{0}}=e x p(F(N))$, where raridom variatile $F(N)$ is rormally distributed, arud

$$
M[F(N)]=D[F(N)]=N \cdot \Delta^{2}
$$

Trie quantity $\left(G_{2}^{2} \rho_{i}^{2}\right)^{2}$ must tie summed upi over all perturted elements of a unit period ir order to fins Δ^{2}. With the aim to estimate Δ^{2} quantity, orie may reflace eacti item of it by the value $G^{2} P$ averaged over a period. rine may assime that

$$
\overline{\rho^{4}}=\frac{1}{2} \cdot\left(\rho_{\max }^{4}+\rho_{\operatorname{man}}^{4}\right)=\frac{1}{2 v^{2}} \cdot\left(1+\frac{1}{x^{4}}\right)
$$

arid filially orie otitains that

$$
\Delta^{2}=\frac{\overline{M G^{2}}}{2 v^{2}} \cdot\left(1+\frac{1}{x^{4}}\right) \cdot \overline{\alpha^{2}}
$$

The quaritity G refiresents refractive force gradient of the element F_{r}. Firially,

$$
\begin{equation*}
M[F(N)]=D(F(N)]=\frac{N_{0}}{2} \cdot \frac{\overline{F_{r}^{2}}}{v^{2}} \cdot\left(1+\frac{1}{x^{4}}\right) \cdot \overline{a^{2}}=N_{0} \Delta_{0}^{2} \tag{4}
\end{equation*}
$$

where N_{0} is the overall number of ferturbed elements in the chanriel.

Repeating the mathematical treatment of Ref.[1] and taking the initial equilibrium crossection in the form of ellifisoid matched with a unit feriod, one otitains that $\theta_{r}(N)=\max _{0 \leq \varphi \leq 2 \pi} \theta(N)-15$ a random quantity
havirig the following distritution:

$$
\begin{equation*}
P\left(\theta_{r}\right)=1-\exp \left(-\left\langle\ln \theta_{r}\right\rangle^{2}<\left(2 N_{0} \Delta_{0}^{2}\right)\right) \tag{5}
\end{equation*}
$$

It follows, that the bean dimensions growth coefficient will rot exceed the a limit with the protability P, if tolerances are defined by the equation

$$
N_{0} \Delta_{0}^{2}=-\frac{(\ln \alpha)^{2}}{3 \ln (1-\rho)}
$$

and tiy the equatian (4) for $N_{0} \Delta_{0}^{2}$.
Now we fass on to coherent oscillation equations. Fandom errors causing them result in deviation of the chanimel avis from an ideal line. We assume the chanmel aris y(z) to be a polygonal line consisting of segments connecting centers of neightioring drift tute ends.

Assuming that drift tube erids are displaced imdeperidently with dispersion Δ^{2} and averagirig over oscillations with μ frequency, one oftains int a similar manner.
the dispersion of the team displacement from the chamel axis at the end of a section under consideration

$$
\begin{equation*}
D(x(N))=\frac{N}{8} \cdot \frac{\overline{F^{2}}}{v^{2}} \cdot\left(1+\frac{1}{x}\right) \cdot \overline{\Delta^{2}} \tag{7}
\end{equation*}
$$

oscillations ampilute $a^{2}=x^{2} \operatorname{mof}_{0}^{2}$ the center as

$$
\begin{equation*}
F(\alpha)=1-e x p\left(-\alpha^{2}, \overline{\alpha^{2}}\right) \tag{E}
\end{equation*}
$$

where

$$
\begin{equation*}
\overline{a^{2}}=\frac{N_{0}}{4} \cdot \frac{\overline{F^{2}}}{U^{2}} \cdot\left(1+\frac{1}{x^{2}}\right) \cdot \Delta^{2}=N_{0} \overline{\Delta_{o c}^{2}} \tag{7}
\end{equation*}
$$

The transverse oscillations amplitude will hot exceed the freset value x with the protatility F, if the transverse displacement of the drift tutie ends tolerarices are foumd from the equation

$$
\begin{equation*}
N_{0} \Delta_{o c}^{2}=-\frac{x^{2}}{\ln (1-p)} \tag{10}
\end{equation*}
$$

and from equation (7) for $N_{0} \Delta_{o c}^{2}$.
If one assumes that the initial displacement is the displacement of drift tute center Δ_{c}, then $\Delta^{2}=2 \cdot \Delta_{c}^{2}$.

The aforecited equations be valid for a focusing chamel with an artitrary feriodic structure. They demonstrate the relation between the effective emittarice growth, the initial errors, the momber of perturted elements arid thie chaminel farameters cthe mean refractive force and mean tueam erivelofe).

Aralyzing formulas defining the theam radius growth caused by randont errors, as well as the coherent oscillatioris amfilitude growth, we found that the lens refractive force $F=G \cdot E / \nu$, where E is the relative lens length, is the universal parameter. which, on the one tiand, determiries the beam growth caused by random errors, arde which, on the other harid, may he varied in a rather. wide range harmlessly to the channel admittance capacity in order to reduce its error susceptikility.

For simplicity we confine our investigation to the most widely used rocusirig feriod structures FGDO and FDG, rectangular focusing field distribution in the absence of $k F$ field. We designate the relative distance between lenses centers in focusing period length as ε_{0} and relative lenses length as $\varepsilon\left(\xi \leq \xi_{0} \leq 0.5\right)$. For the FDO structure $\xi_{0}<0.5$, for $\operatorname{FCDO} \xi_{0}=0.5$.

It is mecessary to firus the minimum of the furction $P C \xi, \xi{ }_{0}{ }^{\text {? }}$ for a fiven channel
admittance capacity. For this purpose we corsider the equation

$$
v_{\min }\left(P, \xi \cdot \xi_{0}\right)=\text { const }
$$

where $v_{\min }$ is the trarisverse oscillatioris relative frequency mirimum. This trariscendental equation may te solved usirig a computer. The solution shows that furiction P deferids weakly on the farameter ξ / ξ o which changed in a wide renge (from o. Ol up to 1). Eut the foint of peculiar interest for limac focusing systems desigmers is the following. There is strong noriliriear deperiderice of leris refractive force on relative inter-lenses distance. For example in Fig.l are shown these curves with $v_{\min }=0 . \epsilon$ and $\varepsilon=\varepsilon_{0}$. As ε_{0} diminishes the required leris refrective strerigth increases. While ε is rather big its change in a wide range does not result iri a corisideratile refractive strength growth and onlv for $\xi_{e} \leq 0.06$ farmeter P grows considerativ.

Fig. 1.Plot of refractive lens forte $P=G \in / 民$ versus distance fetween lemses (iri urits of focusirig feriod length)
for the $\varepsilon=\varepsilon_{0} v_{\text {min }}=0.6$ case
The following recommeridations might te of use for desigriers:

1) The choice of small ξ_{0} for which $P \gg P_{\text {min }}$ is intiadmissitile.
2) It is advisatrle to increase ξ_{0}, and
for chosen ξ_{0} to reduce ξ as far as tectriology allows.

As an example we may cite the higt eriergy LAMPF part. Iri its first eight resoriators $\xi_{0}=0.05$, on the average, (the focusirig period lerigtt, is $370 . .-d 25 \mathrm{~cm}$, distarice tetween lenses centers ir doutilets is 20 cm) arid in othor $3 t$ resonators \& is everi smaller ${ }^{\xi}=0.025$ <the focusing period length is $7 \in 0 \ldots 860 \mathrm{~cm}$ with the same
distarice tetweeri lerises centers). The too small velue of ξ o resulted in a tig coherent oscillations amplitude and corisiderable growth of the beam radius. Had the desigriers increased the value of ${ }^{*}$ o up to o. os, the cofierent oscillations amplitude growth as well as the beam radius growth would have beeri 1.5...2 times smaller with the same tolerances arid the same admittance cafacity.

The aforenamed recommeridatioris were taken into consideration when the Moscow Meson facility focusing ehenmel was desigried as a result of which the average valle of ξ_{0}
was choser to te O.OES (the focusing period length is $220 . .-350 \mathrm{~cm}$, the distance betweer lerises centers is 27.5 cm).

References

1. E.P.Murir. E.I.Eoriderev, A.P.Durkiri, L.Yu.Soloviev. Faridom Perturtation of the Protor Trarsuerse Motion in a Liriear Accelerator and Their Correction.- Particle Accelerators, $197 \mathrm{~d}, \quad \vee .6, N 1, \mathrm{~F} .27-40$.
Z. E.I.Boridarev, A.P.Durkir, L. Yu. Soloviev. Strong Focusirig Fields Perturteations arid Their Influence uror Particle Motion ir Liriac. J. Techri. Phys. 1777, vol. 47 , No. 8 , PF = 16 $22-16.72$.
