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Abstract 

The longitudinal instability of intense beams in a 
transport channel with complex wall impedances is analyzed 
based on the framework of the Vlasov theory. The dispersion 
equation derived characterizes the instability with all the 
relevant parameters including the space charge, the beam 
energy spread, the real and imaginary parts of the complex wall 
impedances. For the beam without energy spread, the growth 
rates of the slow waves are discussed. For the beam with 
energy spread, the illustrative examples show the stable 
regions determined by the beam and wall properties. 

Introduction 

The longitudinal instability of intense beams is a very 
important issue in particle accelerators and other applications 
such as microwave devices [1,2]. In recent years, the problem 
received new attention in connection with the role of the 
longitudinal instability in induction linear accelerators which 
are a promising driver for Heavy Ion Inertial Fusion [3-5]. 
When the heavy ions are accelerated by the induction gaps, the 
beam sees the generally complex gap impedances along the 
accelerators. The interaction between the intense beams and 
these impedances causes the longitudinal instability. 

Following our previous work [6,7], this analysis of the 
longitudinal instability of intense beams in a channel with 
complex impedances is based on the Vlasov theory, taking 
into account the beam energy spread. The dispersion equation 
for the cold beam is expressed as an impedance balance 
equation and the growth rates of the slow waves are discussed. 
The stability due to Landau damping for the hot beams is 
illustrated by examples. 

Dispersion Equation 

Considering one-dimensional model of a coasting beam, 
the perturbed distribution function fl should satisfy the 
linearized Vlasov equation: 

(~ + v 1.- + -q- E ...i.) f (z, v, t) 
at az my' 0 av I 

q a fo(v) 
= - my EI(z, t) av 

(1) 

where q/m denotes the ratio of the charge and mass of the 
charged particles, y is the relativistic factor, Eo is the net 
unperturbed field which is supposed to vanish, fo(v) is the 
unperturbed distribution function, and EI (z,t) is the induced 
longitudinal electrical field acting on the beam particles. 
Under the long wavelength condition, the field EI can be 
calculated as [8] 
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(2) 

where AI(z,t) is the perturbed line charge density, Ew(z,t) is 
the induced field on the pipe wall of the transport channel, Eo 
is the permittivity of free space, and g is a geometric factor of 
order unity. Assuming a wave solution in the form of ei(rot-kz) 

for all the perturbed quantities, the induced field on the wall of 
the transport channel can be related to the perturbed beam 
current and the wall complex wave impedance Zw·(k,ro) per 
unit length as 

Ew(k, ro) = - Z:'(k, ro)Ao Jv fl(k, v, ro)dv, (3) 

where Ao is the unperturbed line charge density. 
Solving Eqs. (1-3) along with the continuity equation in 

the complex (k,ro) domain leads to the dispersion equation 

qAo[ - kg _.~ • 1 dfo(v) dv _ 
3 2 IkZw(k,ro) J d ( k)-I 

my 4 7t Eo y v ro - v 

(4) 
In what follows below, we discuss only the space-charge wave 
solutions of Eq. (4) under a sinusoidal perturbation of 
frequency COo. In this case, Eq. (4) can be written as 

[ 
k2 1 v

3 
df (v) d , .0 ' .' oJ 0 v 

K X s + I k 2 (R + IX ) C dv (v - ro 0 / k) = 1 

(5) 
where K is the generalized perveance of the beam, ko=roo/vo is 
a characteristic wave number with Vo being the average beam 
velocity, R'=R*Ao/Zo and X'=X*AofZo are the normalized real 
and imaginary parts of the wall complex impedance with 
Ao=27t/ko and Zo=377 ohms, and X; is the normalized space 
charge impedance defined by 

A 
X' = X·_o - -g-

s s Z 0 - 2 ~yz 
(6) 

Here Xs * is the space charge impedance per unit length, which 
is a function of the beam energy and the frequency roo. 

Growth Rates of the Instability for a Cold Beam 

A beam without energy spread at a meta-equilibrium state 
is characterized by the Dirac delta distribution function. Eq. 
(5) then can be approximated as 

2 

i(k:k o) =-[R'+i(X'-X's)] 

ko~K (7) 
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The quantity on the left hand side of Eq. (7) is usually referred 
to as the nonnalized electronic impedance of the beam, which 
is simply equal to the normalized space charge impedance 
minus the wall impedance. The general solution of Eq. (7) is 

k=k r +ik
i
=ko(I±.Jf3K.JX·s-X·+iR'), (8) 

where kr is the perturbed wave number and ki is the spatial 
growth or decay rate depending on the sign of its numerical 
value. More explicit expressions for Eq. (8) can be obtained 
in some parameter ranges. For instance, if X; »R'+X', the 
wave number and growth rate of the slow waves are 

(9) 

As an example to apply this result, we consider an 
induction linear accelerator consisting of many induction gaps, 
which can be represented by a succession of essentially 
uncoupled resonators. Each induction gap may be equivalent 
to a discrete R, C, L parallel resonant circuit occupying an 
equivalent interaction length Zg along the beam line, as shown 
in Fig. 1. The resistance R is mainly an external load for 
beam loading purposes. It also accounts for the energy loss of 
the beam in the induction gap. The complex wall impedance 
of such an equivalent circuit is 

R 
Zw(k, co) = . l . 1 ) 

1+1R we--
coL. (10) 

Fig. 1. Circuit model for induction gaps. 

For a sinusoidal perturbation of frequency coo, the relative real 
and imaginary parts of this impedance, i.e. R(coo)!R and 
X(coo)!R as a function of coo/cop are plotted in Fig. 2, where 
cor=(LC)-112 is the resonance frequency of the resonator and it 
is also supposed that the components of the resonator satisfies 
a relation of R(L/C)-I!2=1. From Eq. (9), the approximate 
growth rate per induction gap is given by 

k z "" 1t~ (Ki[1 +R2(CO C __ 1 )2]-1 
i g Zo..J ~ 0 COoL ,(11) 

which has a maximum value at the resonance. 
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Fig. 2. Impedance of the induction gap circuit model. 

Stable Regions for a Hot Beam 

The longitudinal instability for hot beams have been 
studied for circular accelerators [9,10]. Due to Landau damping 
the stable regions can be found in the half R'-X' plane for 
certain beam and wall parameters. To illustrate this, we first 
consider the Lorentz distribution 

1 v - v 0 ~ 2 ]-1 
o( 1tav 0 ( av 0 ) (12) 

f v)= + 1 

The parameter a is a real quantity to specify the amount of the 
velocity spread, and 2a v 0 is equal to FWHM of the 
distribution. Carrying out the velocity integration for k;=0 in 
Eq. (5), the dispersion equation becomes 

i[O- ia)k r - koJ
2 

:::_ [R' + i[X' - k: x'll 
k k ~K 2 s 

r 0 k 0 , (13) 

which describes the boundary between the stable and unstable 
regions of the instability in the R'-X' plane. Note that in Eq. 
(13) the impedances are nonnalized with respect to A=21t/kr 
instead of Ao=21t1ko. An explicit expression for the boundary 
then can be written as 

x' =(1- ~~RI X's(1 - ~~R')+ ~;]-
2 

K~R') 

2a(2 a - K~R') . (14) 

Fig. 3a shows the result from Eq. (14) where the boundary 
curves are plotted for three different velocity spreads a at a 
fixed beam perveance K. The stable regions are bounded by 
the curves and the X' axis. The upper half plane is 
characterized by the inductive component of the complex 
impedance, while the lower half plane is capacitive. The 
stable regions are mainly obtained by the capacitive 
components. When the beam energy spread is getting smaller, 
the stable region is narrower and, eventually collapses to the 
X' axis. Fig. 3b plots the stable regions for a fixed velocity 
spread but with three different beam perveances K. It is 
evident that the space charge increases the instability 
dramatically. 
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Fig. 3a. Stable regions for the Lorentz distribution in the half 
R'-X' plane for three different velocity spreads at a 
fixed beam perveance K, where ~=O.3 and g=2 are 
used in the calculation. 
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Fig. 3b. Stable regions for the Lorentz distribution in the half 
R'-X' plane for three different beam perveances at a 
fixed velocity spread. 

For a Gaussian distribution 

fo(v) = ~ av 0 CXp[ -(":v J] 
the velocity integral for kj=O in Eq. (5) yields 

2K ~. o. . 
[ 

k 2 1 7Xs+i~(R +iX) [1+~Z(~)]=l 

Here Z(~) is the plasma dispersion function defined by 
2 

+~ e- x 
Z(~) = Vi J dx--

-~ x - ~ 

(15) 

(16) 

(17) 

with ~=(kofkr-l)/a. The boundaries for the stable regions are 
obtained by numerical solutions of Equation (16) and plotted 
in Fig. 4a,b. In comparison with the Lorentz distribution, the 
stable regions are much smaller for the Gaussian distribution 
under the same beam parameters. 

Summary 

The one-dimensional Vlasov equation has been used to 
analyze the longitudinal instability in a linear beam transport 
channel with general wall impedances. The growth rates of the 
slow waves for a cold beam are discussed and calculated for the 
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Fig. 4a. Stable regions for the Gaussian distribution in the 
half R'-X' plane for three different velocity spreads at 
a fixed beam perveance K, where ~=O.3 and g=2 are 
used in the calculation. 
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Fig. 4b. Stable regions for the Gaussian distribution in the 
halfR'-X' plane for three different beam perveances at 
a fixed velocity spread. 

induction gaps. The beam energy spread is a stabilizing factor 
for beam transport due to Landau damping. It is possible to 
achieve stable operations in the design of induction accelerators 
for heavy ion inertial fusion if the right beam parameters and 
wall properties are chosen. 
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