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Introduction 

For an ultrarelativistic (" ::?> 1) particle traveling in a 
beam pipe of constant cross-section, the calculation of 
the longitudinal/transverse coupling impedance reduces to 
two-dimensional calculation of the static fields due to a 
monopole/ dipole charge or current singularity along the 
axis. In this paper, we formulate the general calculation of 
coupling impedance and apply it to an elliptical beam pipe. 
In particular, we obtain the longitudinal/transverse resis
tive wall impedance, as well as the longitudinal/transverse 
impedance of one or more small holes in the beam pipe. 

Longitudinal Coupling Impedance 

For a drive beam of current density 

.Jz = 106(x - x1l6(y - yJlexp(-jk::) (1) 

in the frequency domain. with k = >..!/c, the longitudinal 
impedance is defined as 

(2) 

where Ez is the longitudinal component of the electric field 
when XI = O,Yl = O. We use Eq. (1) to rewrite Z,,(k) as 

1 J --ZII(k) = -1]01" dv t'· r, (3) 

where the volume integral is over a region which includes 
the drive beam. 

\Ve now consider two situations. The first. denoted by 
the subscript 1, is the lossles,,; pipe, and the second. de
noted by the subscript :2, is the pipe with wall losses. We 
then construct 

IIol"[Z,I,:!)(k) + ZIII[)' (kl] = Ilnl"[LIIICi(k) - Zil[)(l~)] 

-JddE".f*+E~.J]. (4) 

• Supported in part by t he Department of Energy. 
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where Z,\l)(k) is imaginary. (It actually vanishes in the 

ultrarelativistic limit.) Using 

-- ...... -- ...... ...... 

.J = \7 X H I ,2 - j>..!fEu . \7 x E 1 ," = -jWILH 1 ,:! (.5) 

Eq. (4) can be converted illto a smfac(' integral. I('adillg t() 

where the surface encloses the drive beam. If we choose ,'" 
to be the inside surface of the beam pipe. il' Ej x if'.! = (J. 
and we haw. for a length of Iwalll pipe L. 

(7) 

where I:i j" a coordinate tall!',(,lltial to the beam JllJW surfac,' 
in a planp perpendicular to tlw axis of the iwalll pip('. 
The form ill Eq (7) is a gClleralization of a result derived 
earlier[l] for a beam pipe of circular cross-section and used 
recently by N apoly[2]. 

\Ve now obtain the result for a resistive wall by express
ing Ez at the wall in terms of HIs' Specifically we take 

E: == -k6( 1 + j)ZOH 1s /2. (8) 

where 6 = (:2/k(YZO)I/c is the skin depth of the wall mate
rial whose conductivity is (Y. Here Zo = {ll/f)I/'.! == 1:2071" 
ohms is the impedance of free space. Using Eq. (8). we 
write the longituciinal illlJwdanre as 

(U) 

Finally, HIs can be obtained from the solution of the 
Laplace (or Poisson) equation in the two transverse dl
nWllsions since c"iY /rY:" = i-J"2/ijt'.! for all llitrarelativistic 
particle. Specifically 

/:u II 1., = L"11l = -t'xp(-JL)'\.L<1>(·I".Y), (IU) 

where <1>(.1". .II) is tilt' ,,;ollltion of 

'\i <1>(.1".,1/) = -Lu/()C>(.I" - ·1"1 )f,(y - ill)' (11) 

with perfectly conducting houndary conditiolls at tilt' 
beam pipe wall. Here 11 is a coordinate normal to the 
beam pipe wall and EI11 is the electric field normal to the 
beam pipe surface for the loss less problem. 
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Transverse Coupling Impedance 

The transverse coupling impedance can be analyzed in a 
similar manner. If we start with the axial dipole drive 
current 

In the transformed coordinate system, Eq. (19) becomes 

('23) 

where 1l) ,1'1 are related to ,1'1, Yl by Eqs. ('20) and ('21). 

J2 = Ioo(y)exp(-jkz)[o(.z: - xJ) - o(x + .rd], (12) We write the solution to Eq ('2:)) as[:l] 

the transverse impedance in the x-direction can be ex
pressed as the limit for small .1:) of 

Z (k) - __ 1_ JCO d' BEz jb (13) 
x - 2klox) -co ' ax e . 

where fJEz/ax is evaluated for x = y = 0. But we can also 
write the derivative of Ez at the origin as 

E 2 (x), 0, z) - E z ( -x), 0, z) 

2x) 

for vanishingly small x). Thus we have 

(14) 

(1.5 ) 

U sing the value of I in Eq. (12). we can therefore w ri te 

(16) 

in analogy with Eq. (:n. As before, the volume integral 
in Eq. (16) can be written as a surface integral, and we 
obtain 

4xilloI 2kZ.r(k) = -L f dsEzHis· (17) 

where we must now use the fields corresponding to the 
dipole configuration in Eq. (12). Finally. we use Eq. (8) 
to obtain 

Beam Pipe of Elliptical Cross Section 

The Poisson equation for the electrostatic potential of a 
line charge of density ,\ located at x = x), Y = y) IS 

( 19) 

where '\/fO can be written in terms of the driw currnt as 
'\/to = ZoIo. We transform to elliptic coordinates defined 
by 

:L' = c cosh U cos I' 

y = c sinh 11 sin l' 

('20) 

('21 ) 

where the beam pipe is an ellipse of lllajor axis '2a, minor 
axis 2b. with 

a = ccoshllo . b = csinhllo , c2 = a2 
- b". (22) 

<1>(11, v) = 10(11)+ Lln(ll)coSnv+ Lgn(ll)sinl1v, (24) 
n=1 n=1 

where In (ll) turns out to be proportional to cosh nll cos I1Vl 
and gn( ll) turns out to be proportional to sinh 11 II sin 11 V). 

For the longitudinal impedance. we use 

IH)sl = __ 1_ a<1> = ~ QO(l') 
Zoh all 27r h(v) 

where the metric h( v) is gi ven by 

and where 

rv 
, cos '21l11' 

Qu(l') == 1 + 2 L (-1)''' . . 
cosh L17l 1I II 

111=1 

In this way find 

where 7l = I.:L/'27r is the hal'liionic nUllllwr, and wl]('I'(' 

sinh llO j,e" Q6( 1 )dv 
GO(IlO) = -.-- ,') .') .)' 

27r 0 [slnh-llo +slll-vj1/-

In a similar way we obtain the transverse ill1pedance 

where 

In this case we have 

~ C05('2111+ 1)1' 
Q lJ' ( u) = '2 L ( - 1 )'J/ ( '2711 + I) , 

cosh('2m + I )UII 
111=U 

~ sin(2711 + 1)1 
Qly(l) = '2 L(-I)'I1('2711 + 1) . . 

slllh('2111 + 1 )UII 
rn=(J 

(2.5) 

('2G) 

('27 ) 

('2S) 

('29) 

(30) 

(:)1 ) 

\Ve have dlOsell a nOl'lllallzation such thaI C;II(:x.) = 
G1.r(x) = (;Iy( x) = I. reproducillg tile \\'(,11 kIlO\\'1I J'('~ 

suits for a circular bealll pipf'. 
A grap" of the lIulllerical values of Gil. L'I.1·' C; ly is pn'~ 

sen ted in Fig. 1 as a function of if = (0 - b)/(o + b). The 
values for if = 1 correspond to parallel plates, and are ill 
agreement with results obtained hy others. 
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Coupling Impedance of Holes In the 
Beam Pipe 

We start with Eqs. (7) and (17) and assume that the 
dimensions of the hole are small compared with the wave
length. In this case, the coupling integral 

written here as an integral over the interior aperture of 
the hole, can be expressed in terms of the inside electric 
polarizability, Xin, and inside magnetic susceptibility, 1/Jin, 
of the hole as 

(35) 

We have here assumed that the field outside the beam 
pipe can be ignored. A more complete discussion of the 
inside and outside polarizability and susceptibility is given 
elsewhere, including numerical results for a circlIlar hole in 
a wall of finite thickness[4]. 

Once 1/;;n and Xin are known, the impedance can be 
calculated from IH ls 12 along the beam pipe wall. For the 
longitudinal coupling impedance, IH 1.< 1 is proportional to 

1.0 .... --_ .. _ ......... ", .. . 

\. " 

-~ -

Qo(V) in Eq. (27) for an elliptical beam pipe, where v 
is the azimuthal coordinate of the hole. For the trans
verse coupling impedance the corresponding quantities are 
QIx,lY(V) in Eqs. (32) and (33).The impedances of well 
separated holes (by at least a few hole diameters) can be 
added to each other, since the surface integral in Eq. (34) 
extends over all holes. 
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Figure 1: numerical values of GO (Q),Gl.r(q) and G 1y (Q) for the elliptical pipe as ii function of the "Ilollle" 'I = (u - b)!(u + b). 
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