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Abstract 

In induction accelerators proposed for heavy-ion fusion, 
the ion beam is usually confined longitudinally by an ax
ial electric field tailored to balance the space-charge field. 
Since generating such electric field "ears" is costly and im
precise, it is important to know how frequently the ears 
must be applied and what errors in the waveform are tol
erable. For practical parameters, cell breakdown is found 
to impose the principal limit on the spacing of the accel
eration modules applying the ear field. Also, it is demon
strated that ear fields may be approximated in several ways 
by discrete field steps with little impairment of the longi
tudinal confinement. 

I. Introduction 

Unlike radio-frequency accelerators, induction acceler
ators normally provide no longitudinal confinement of a 
beam. Consequently, in applications, such as drivers for 
heavy-ion fusion (HIF), that require high current densities, 
induction accelerators must provide auxiliary confinement 
to prevent unacceptable lengthening of pulses during ac
celeration. The usual method proposed for longitudinal 
confinement is to apply appropriately chosen electric-field 
spikes at the beam ends that balance the space-charge force 
by slowing the beam head and accelerating the tail. To ex
actly balance space charge, these field "ears" would have 
to be applied continually, and it is shown later that the 
required ear field in that case would be 

o ( h ) Eear ~ -g OT (J2e2 ' (1) 

where h is the beam current, f3e is the beam axial velocity, 
T is the time a beam slice arrives at some specified position 
s along the accelerator, and 9 is an inductance-like factor 
depending on the beam geometry. In fact, the ear field is 
only expected to be applied in selected induction modules, 
referred to here as "ear cells". If the ear field is applied 
only across cell gaps with a total length Lg in a lattice of 
N periods, than the field in Eq. (1) must be increased by 
a factor of 2N L/ L g , where L is the half-lattice period. 

The two methods have been suggested for generating 
ear fields. Pulse-forming lines (PFLs), which are trans
mission lines "tuned" by lumped circuit elements, give an 
accelerating field with a smooth time variation, but they 
offer limited control over the pulse shape. Due to the finite 
response time of the circuite elements, the output signal of 
a PFL typically cuts off the high-frequency components of 
the desired signal. Also, since PFLs either synthesize the 
ear voltage as part of a periodic waveform or obtain it by 
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differentiating a square pulse, this approach is quite ineffi
cient. A more flexible and efficient method for generating 
ear fields is to use banks of field-effect transistors (FETs). 
A group of FETs can be switched in series to generate a 
voltage step, and the output of many such banks, appropri
ately staggered in time, can be combined in an inductive 
adder to produce a staircase approximation to the ideal 
ear voltage. Since FET-controlled pulsers are much more 
costly than ordinary induction pulsers, it is important to 
know how frequently the ear fields must be applied to be 
effective. Also, effects of using a staircase approximation 
to the ideal ear voltage should be determined. 

In this paper, the effects of ear fields on a HIF pulse are 
studied using a fast-running envelope code CIRCE, which 
has been described elsewhere [1,2]. We first present an an
alytic expression for the ear fields and briefly indicate how 
they are calculated in CIRCE. The effects of applying ideal 
ear fields at widely spaced ear cells are then summarized, 
and the consequences of approximating the ear fields by 
FETs are discussed. 

II. Ear Model 

As discussed in Ref. [2], the beam longitudinal dynam
ics is modeled in CIRCE by treating slices of the beam 
as Lagrangian fluid elements. This approach implicitly as
sumes that the beam has a negligible longitudinal temper
ature and that the slices remain approximately collinear. 
An approximate f3 equation is obtained by retaining only 
the electrostatic force in the single-particle motion equa
tions and averaging the axial component over the beam 
cross-section. For a beam in a straight lattice with an ion 
mass M and charge state q, we obtain 

(2) 

Here, the average external electric field E ext is approxi
mated by the voltage across accelerating modules divided 
by the gap length, and the field due to the presence of the 
beam is found to be approximately 

(3) 

where R is the beam-pipe radius, and 9 is given by 

g~ --In -- . 1 (2R ) 
2nD a + b 

(4) 

In deriving the beam field, the radial electrostatic field is 
assumed to vary over a much shorter scale length than Eb , 

and the continuity equation is used to convert derivatives 
with respect to s into T derivatives. Combining Eqs. (2) 
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and (3), we obtain an equation for Eb in terms of Eext and 
the time derivative of h/{32c2: 

(5) 

The first term in Eq. (5) accounts for the beam space 
charge, while the second, usually much smaller, represents 
the induced electric field associated with beam acceleration 
and has no effect on the beam length. The ear field that 
balances the space charge force is then given by 

(6) 

where we have inserted the previously mentioned gap-oc
cupancy factor. Typically, the denominator in the leading 
factor of Eq. (6) may be approximated by unity, so the 
expression reduces to Eq. (1) in the limit of continuous 
acceleration. 

For calculation, we use Eq. (6) to generate a table 
of ideal ear-field values on a fine time grid centered at 
the beam midpoint. Field values may be obtained by lin
ear interpolation between tabulated values when model
ing smoothly varying ear fields, or the values may be re
placed by an appropriate stairstep waveform to model the 
field expected from FETs. For an even number of voltage 
steps 2N., specified by the user, the size of field steps !:l.Ez 
is chosen so that the maximum electric field excursion of 
the approximate waveform exceeds that of the ideal sig
nal by about one step, ensuring that the beam ends are 
sufficiently confined. The timings of the field steps are 
tabulated by stepping through the ear-field values and cal
culating by linear interpolation the times at which the ideal 
field approximately equals (n + ~)!:l.Ez, for integer n. The 
stairstep waveform can then be constructed by increasing 
the electric field by !:l.Ez at the tabulated step times. Alter
nately, either N. separate waveforms with steps occuring 
in antisymmetric pairs or 2N. waveforms with single steps 
can be generated to model FET switching without an in
ductive adder. This step algorithm clearly is appropriate 
only for ear fields that are monotone nondecreasing, but 
this constraint is normally satisfied for HIF beams. 

III. Results 

Since we are interested in effects of ear-cell spacing and 
waveform nonidealities, we choose here to model a straight 
lattice resembling that of a HIF driver but with none of the 
complications of a realistic design. The beam used in the 
calculations consists of singly charged 200 amu ions with 
an initial energy of 1 GeV, an initial duration of 0.750 J..IS, 
and a total charge of90 J..IC, making the peak current about 
132 A. The current is taken to be constant over the central 
60% of the pulse, and the normalized emittance is taken to 
be 1 x 10-5 m-rad, making the beam strongly space-charge 
dominant. The lattice consists of 1.6 T quadrupole dou
blets with 30% occupancy and one accelerating cell per 2.9 
m half-lattice period. The main differences between this 
model lattice and that for a linear HIF driver are that the 
53 kV /m acceleration gradient is lower, the lattice parame
ters do not change with increasing beam energy, and there 
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Fig. 1 Beam quantities as functions of arrival time T 

for ideal voltage ears applied at every induction 
cell: (a) beam (3 = vic; (b) beam current h. 
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Fig. 2 Beam quantities as functions of T for ideal 
field ears applied at one induction cells every 
8 periods: (a) {3; (b) h. 

is no beam compression. Also, there are no magnet errors 
or initial mismatches. 

When the pulse is accelerated for about 3.7 km through 
this lattice in the absence of ear fields, the beam space 
charge causes the beam to lengthen by a factor of 3.2 and 
develop a 2% velocity tilt from head to tail. In contrast, 
when an ear field calculated from Eq. (6) is added to the 
constant accelerating field in each induction cell, the beam 
duration remains constant within 2%, and variations in 
{3 along the beam are kept to about ±0.05%. Plots of 
{3 and h as functions of the arrival time T at the end of 
the lattice are shown in Fig. 1. The small ripple seen in 
h results from space-charge waves launched at the beam 
ends, and the pronounced {3 variation near the beam mid
point comes from the axial electric fields associated with 
the beam density ripple. Space-charge waves are iniated 
near the ends because the same ear field is used in all cells, 
whereas Eq. (6) indicates that the ear field should in fact 
decrease somewhat as {3 increases. The resulting ripples 
are found in longer CIRCE runs to produce progressively 
shorter-wavelength fluctuations due to interference, but in 
a real beam, we would expect to see the wave energy ther
malize and increase the beam longitudinal emittance. 

Increasing the spacing between ear cells in this lattice 
makes little change in longitudinal confinement. For the 
case shown in Fig. 2, with the ideal ear field applied in one 
induction cell every eight full periods, the change in length, 
amounting to about 0.4%, is too small to be visible. The 

Proceedings of the 1992 Linear Accelerator Conference, Ottawa, Ontario, Canada

TU4-61 487



2IIIIr--~--~-~--' 

."23 

'50 

.1121 

e~-~~-~-~-~ 
lU.1 ,'4.2 "4.4 114.6 

." 21 "-:-_~ __ "'---_~_-" 
,'4.1ilI 114.2 11(." "4.6 

TV.S) TV.S) 

Fig. 3 Beam quantities as functions of T for a 20-step 
approximation of ideal ears applied at one induc
tion cell every 8 periods: (a) /3; (b) h. 

most obvious consequence of the wider spacing in this case 
is the apparent overcompensation for space charge near the 
beam ends, which is due to the velocity kick imposed at the 
previous ear cell not having fully relaxed at the end of the 
lattice. In addition, there is a some initial fluctuation in 
the beam duration with s due to the more poorly matched 
ear fields and consequently somewhat enhanced genera
tion of space-charge waves. These changes are exaggerated 
when the ear-cell spacing 'is increased to one ear cell per 16 
lattice periods, but they still constitute minor changes of 
basically good longitudinal confinement. Apparently, lon
gitudinal confinement remains effective and non-disruptive 
so long as the ear fields are applied frequently compared 
with the characteristic time for beam expansion. 

The principal limit on the spacing of ear cells in these 
cases arrises from insulator breakdown in the induction 
cells. Current insulator technology limits electic fields to 
less than about 5 x 106 V 1m, with certain exotic mate
rials tolerating up to 107 V 1m. For a given cell voltage, 
the electric field may be reduced by enlarging the gap, 
but this approach is limited by the increasing cell accep
tance for wakefields, which enhances growth of the beam 
break-up instability. Balancing these limitations, reason
able values for the gap size lie in the range of 2 - 4 cm, and 
for the computational example, we use 3.5 cm. When the 
ear fields are imposed in every cell, the maximum ear-field 
magnitude for the example, occuring at the beam ends, 
is about 2.5 x 106 V 1m, and when the ears are applied 
in one cell every eight periods, this maximum field ampli
tude increases to 4.0 x 107 V 1m. Unless the beam-current 
rise and fall times are lengthened, which would reduce the 
driver efficiency, the ear fields must be applied in this case 
at least once every four periods to avoid breakdown. This 
constraint becomes progressively tighter as the beam is ac
celerated to 10 GeV due to the increasing compression and 
correspondingly shorter current rise times. 

Approximating the ear field by a series of steps in ef
fect introduces a small mismatch at the front and back of 
each step. Since the ions at the bottom of each step are 
accelerated less than the ions immediately behind them 
at the top of the step, an increase in beam density is ex
pected near each step, resulting in low-amplitude space
charge waves. The simulations suggest that these waves 
are not seriously detrimental so long as five or more steps 
are used to approximate each ear, or ten to represent the 
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Fig. 4 Beam quantities as functions of T for a 20-step 
approximation of ideal ears with pairs of anti
symmetric steps applied in 10 successive induction 
cells every 8 periods: (a) /3; (b) h. 

full ear field. As an illustration, Fig. 3 shows the final /3 
and h as functions of T for a case using ten-steps per ear 
and one ear-cell every eight periods. When the plots are 
compared with Fig. 2, the principal difference is the addi
tion of high-frequency ripple to both quantities. For this 
case, as well as for the case with five steps per ear, thermal
ization of this ripple would make a small contribution to 
the expected longitudinal emittance. However, when fewer 
than five steps are used to approximate each ear, the am
plitude of space-charge waves increases substantially and 
is clearly unacceptable for three steps per ear. 

The effect of imposing field steps in different cells is 
illustrated in Fig. 4. The beam and fields used for that 
figure are identical to those in Fig. 3 except that field steps 
are imposed in antisymmetric pairs in the acceleration cells 
of five successive lattice periods, with the field pattern be
ing repeated every eight periods. Comparing Figs. 3 and 
4, we see that the level of short-wavelength variations in /3 
and h is somewhat reduced, and the incomplete relaxation 
of /3 at the head and tail is effectively eliminated. This later 
effect is expected, because the beam ends receive a series of 
small kicks rather than infrequent large kicks and therefore 
are never displaced far from equilibrium. The order that 
the field steps are applied appears to be unimportant. Re
versing or scrambling the order that the pairs of steps are 
applied changes the details of the short-wavelength vari
ations but not their average amplitude, and applying the 
field steps singly rather than in pairs is likewise found to 
make a negligible difference. Besides being somewhat less 
disruptive, this approach of applying the ear-field steps in 
separate cells has the obvious advantage of reducing the 
field stress in any cell and thereby avoiding breakdown. In 
a HIF driver using induction cells, distributed ears of this 
sort are likely to be the only practical method for longitu
dinal confinement of the beam. 
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