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Abstract
The dielectric response of a charged particle beam

to a periodic focusing field enhances the effective
focusing strength, reducing the matched beam radius and
affecting the motion of halo particles.  The change in the
effective focusing strength is found for a uniform-density
beam with a diffuse halo in a quadrupole channel, giving
increases of 2% to 8% for some typical examples.  These
changes are important for both the production and
behavior of halos in intense, high energy beams, in
which fractional current losses as small as 10-8 /m can
result in radioactivation.

The effective focusing strength of a periodic channel
is an important factor for accelerator applications requiring
high beam intensities, such as heavy ion inertial fusion,
radioactive waste transmutation, spallation neutron sources,
tritium production and muon production.  Limiting currents
have been found in the past using the smooth approximation
[1] to find the effective focusing strength of a periodic channel
which, along with the aperture, determines the current that can
be transported through a given channel [2].  Accurate
knowledge of the effective focusing strength is also important
for matching.  Transverse mismatch has been shown to be an
important cause of halo production and the resulting particle
losses [3-5].  Fractional current losses as small as 10-8 /m can
result in radioactivation, inhibiting routine maintenance [6];
this can also be the limiting factor in the transport of intense,
high-energy beams [7].

The dielectric response of a plasma to the periodic
field of a Paul trap was recently shown to enhance the effective
focusing strength of the trap [8].  The dielectric response
results from the correlation between the oscillations in the
space charge field and the peiodic focusing field [9].  The
dielectric response is shown here to increase the effective
focusing strength of the channel, by an amount that depends
on the shape of the beam, the type of focusing, and the ratio of
the plasma frequency of the beam, ω p, to the frequency of the

focusing, ω .  The dielectric response and the fractional change
in the effective focusing strength are found for a uniform-
density continuous beam with a diffuse halo and for a uniform-
density ellipsoidal (bunched) beam, both in a quadrupole
channel.  The increase in the effective focusing strength results
in a higher transverse phase advance per period, a higher
average beam density and a lower average beam radius.  Since
accurate matching is important for beam applications requiring
low losses, the effect of the dielectric response on the matched
beam parameters can be important for the applications listed
above.

A beam in a periodic focusing channel experiences a
fluctuating electric field Ef (r,s0), which consists of the
fluctuating component of the focusing field, Ecf  (r,  s 0), and

small fluctuations in the space charge field, Esf  (r, s0).  The
position relative to the center of the beam is r, and the
focusing is periodic in s, the longitudinal distance along the
channel.  Although particles with different longitudinal
positions within the beam are at different phases in the
periodic field, it is assumed that the effects of this are
negligible so that the fluctuating fields can be written as
periodic functions of the longitudinal position of the beam
center along the channel, s0.  The focusing field and the space

charge field are each divided into two parts so that the
fluctuating components have an average value of zero and the
steady-state components vary slowly or not at all with s0.

The frequency of the focusing is ω=2πvB/S, where S

is the period of the focusing along the longitudinal direction
and vB is the beam velocity.  In general there are three periods

(Sx , Sy  and Sz) and three frequencies (ω x , ω y  and ω z), one for

each of three directions in Cartesian coordinates (x and y are
transverse and z is parallel to the beam axis; for most practical
applications Sx = Sy).  The focusing field can be the result of

electrostatic or magnetic quadrupole lenses, induction-
acceleration gaps, and magnetic solenoids (if the beam is
considered in the Larmor frame).  It can also be the result of
focusing by electromagnetic fields which are periodic in time
and space, as in the case of radio-frequency quadrupole (RFQ)
focusing.  The focusing field is written as an electric field with
the approximation that particle motion in the beam frame is
nonrelativistic, so that magnetic focusing can be represented
by equivalent electrostatic fields.  The force resulting from the
magnetic field of the beam is included in the self electric field
(the space charge field) with the same approximation.  Unless
otherwise stated, all quantities are considered in the lab frame.
With RFQ focusing and induction-acceleration gaps, it is
assumed that acceleration along the longitudinal direction is
slow enough that it can be treated as adiabatic, and that the
beam is in phase with the time-varying field so that the
focusing field can be treated as periodic only in longitudinal
distance along the channel.

The effective focusing field can be found from the
average field of a particle due to its motion in the periodic field
[10].  The motion of a particle in the periodic field is first
found with the fluctuating field as a function of position fixed
at Ef (r,s0) = Ef (r0,s0), where r0 is the position of the particle
averaged over a period.  The resulting particle position is r0 +
δr; the first-order variation in the position of the particle
resulting from the fluctuating field is δr.  The effective field
that results from the fluctuating field is then found to first
order from

Eeff = Ef(r ,s0) = δr ⋅ DEL0( )Ef (r0 ,s0 ) ,       (1)

where DEL0 is the gradient with respect to r0 and the brackets
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represent averages over a focusing period.  The effective field
of Equation (1) has previously been derived for a Paul trap
without space charge [10] and for a periodic focusing channel
without space charge fluctuations [11].  Solving for δr from
the fluctuating field and substituting into Equation (1) gives an
effective field of

Eeff ≈
q

γmvB
2 Ef r0 ,s0' '( )

0

s0 '

∫0

s 0

∫ ds0' ' ds0 ' ⋅DEL0( )
E f r 0,s0( )         (2)

where q and m  are respectively the particle charge and mass,
and γ  = (1-vB

2/c2)-1/2 is the relativistic factor.  In a quadrupole

channel the steady-state component of the transverse focusing
field is zero, so the field of Equation (2) is the total effective
focusing field.  For transverse focusing by solenoids or
longitudinal focusing by induction-acceleration gaps, the
steady-state component of the focusing field is typically much
larger than the effective field of Equation (2), so that the
dielectric response, which affects only the fluctuating
component of the field, has much less effect than in a
quadrupole channel with the same frequency and focusing
strength.

The dielectric response occurs through the effect of
space charge fluctuations on Ef (r0,s0).  This will be found
first for the core and halo of a uniform-density continuous
beam with a diffuse halo in a quadrupole channel with average
axial symmetry.  The dielectric response will then be
considered for the core of a uniform-density ellipsoidal
(bunched) beam in a quadrupole channel with average axial
symmetry.

The electric field in a transverse direction (x) of a
continuous, uniform elliptic beam with current I and velocity
vB is Esx = Ix/(πε0γ 2vBxm(xm+ym)), where xm  and ym  are

respectively the beam envelopes in the x and y directions, and
ε0 is the permittivity of free space [12].  In a quadrupole
channel which has average axial symmetry, the fluctuations in
the two transverse directions have the same magnitude and
functional form, and are out of phase by π.  The beam
envelopes can then be written as xm = xm0 + δxm  and ym = xm0

- δxm , where xm0 is nearly independent of s0 and δxm  has an

average value of zero.  The electric field can then be split into
a steady-state component and a fluctuating component with a
linear expansion in δxm .  The resulting fluctuating field

component is

Esfx =
− Iδxm x

2πε 0γ
2vBxm0

3 .         (3)

Using Equation (3), setting Efx  = Esfx  + Ecfx , where

Efx , Esfx  and Ecfx  are respectively the x components of the

fluctuating parts of the effective focusing field, the space
charge field and the focusing field, and solving for δxm , gives

Efx = Ecfx /ε ,         (4)

in which ε (by definition) is the dielectric constant.  The
dielectric constant for this case is

ε = 1− Γ
ω p

2

ω 2 ,         (5)

in which Γ = 1/2, ω p = (q2ns/ε0γ m)1/2 is the plasma frequency,

and ns is the particle number density.  Equation (5) will be
used for other types of beams and for halos with different
values for Γ, depending on the geometry.

In deriving Equations (4) and (5) it was assumed that
ω p

2/ω2 << 1, and that fluctuations in the focusing fields and

space charge fields occur sinusoidally with the same frequency.
For most focusing channels the fluctuating component of the
focusing field is not a sinusoidal function of longitudinal
distance along the channel.  In order to define the dielectric
constant, the fluctuations are approximated as sinusoidal
functions of s0.  Small deviations in the functional form are

assumed not to have a significant effect on the dielectric
response of the beam.

Since ε<1, Equation (4) represents an enhancement of
the periodic focusing field.  This effect results from the fact
that the beam has maxima in its extent along any axis, and
minima in the magnitude of its space charge field, at
longitudinal positions along the channel where the focusing
field along that axis is at a maximum.  Likewise, the beam
has maxima in the magnitude of its space charge field where
the focusing field is at a minimum.  Fluctuations in the space
charge field are therefore correlated with the focusing so that
they enhance the effective focusing field.

Substituting Equation (4) into Equation (2) leads to
the conclusion that the effect of the dielectric response of the
beam is to increase the effective transverse focusing field of a
quadrupole channel by the factor 1/ε2.  For example, a
continuous beam in a quadrupole channel with ω p/ω  = 0.2 has

a dielectric constant of 0.98.  The dielectric response increases
the effective focusing field of this channel by about 4%.

The same technique can be used to find the effect of
the dielectric response on halo particles surrounding the
uniform-density core of a continuous beam.  The model of a
uniform-density continuous beam core that is mismatched in a
continuous (nonperiodic) focusing channel has been used to
study the evolution of halo particles [5], in which variations in
the space charge field resulting from the oscillating core were
found to drive some particles to larger radii.  Here, the effect
on the effective focusing strength is found from oscillations of
the space charge fields for a matched beam in a periodic
channel.  The same result applies to a mismatched beam in a
periodic channel if the frequency of the mismatch oscillations
is much less than ω .

The beam has average axial symmetry, and variations
in xm  and ym  are out of phase by π.  The dielectric response of

halo particles arises from the periodic motion of the particles
relative to the beam axis, and also from the periodic variations
in the shape of the core.  The position of a halo particle is
written as (x, y) = (x0 + δx, y0 + δy), and the envelopes are

again xm  = xm0 + δxm  and ym  = xm0 - δxm .  Using the electric

field along a transverse direction outside of a continuous,
uniform-density elliptic beam core [12], the self electric field
can be written in terms of a steady-state component and a
fluctuating component with linear expansions in the
fluctuating quantities.  Solving for the resulting particle
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motion by the same method as in the previous case, the
fluctuating field is again described by Equations (4) and (5).  In
this case

Γ =
xm0

2 x0
2 − y0

2( )
x0

2 − y0
2( )2 +

xm0
4 3y0

2 − x0
2( )

x0
2 + y0

2( ) 3 .         (6)

For example, with x0 = 1.5xm0  and y0 = 0, ω p/ω  = 0.2 gives a

dielectric constant of approximately 0.99.  The dielectric
response increases the effective focusing field at this location
by about 2%.

The same method will now be used for the core of a
bunched beam with average axial symmetry, which is taken as
a uniform-density ellipsoid.  The envelope fluctuation in the
longitudinal direction is typically either out of phase with the
transverse fluctuations by π/2 or it has a different (and
nonresonant) frequency from the transverse fluctuations; either
way it can be ignored in finding the effective transverse
focusing.  The electric field in a transverse direction inside a
uniform ellipsoid without images [12] can be split into a
steady-state component and a fluctuating component with a
linear expansion in δxm .  The remaining integral is solvable

analytically, resulting in a fluctuating field component of

Esfx =
−3Qδxmx

4πε 0xm 0
3 γ 2zm0

⋅

1

2ξ2 −
3 1- ξ 2( )

4ξ4 +
3 1- ξ 2( )2

ln
1+ ξ
1- ξ

8ξ5

 

 

 
 
 

 

 

 
 
 

,         (7)

where ξ = (1-xm0
2/γ 2zm0

2)1/2 is the eccentricity of the bunch in

the beam frame, zm  is the beam envelope in the z direction and

Q is the total charge of each bunch.  For a bunch that is
spherical in the beam frame (γ zm0=xm0), Equation (7) becomes

Esfx  = -3Qδxmx/(10πε0xm0
4).  The same method as in the

previous cases results again in Equations (4) and (5), in which
Γ equals the quantity in square brackets in Equation (7).  For
the special case in which the bunch is spherical in the beam
frame,  Γ = 0.4.  For example, a beam with an aspect ratio of
γ zm0 /xm0  = 2 (for which Γ is approximately 0.4) in a

quadrupole channel with ω p/ω  = 0.3, has a dielectric constant

of approximately 0.964.  The dielectric response increases the
effective focusing field of this channel by about 8%.

The envelope equations [13] can be used to relate
ω p/ω  to the transverse space charge tune depression (kx /kx0)

and the phase advance per period (σx0), giving

ω p

ω
= 1−

kx
2

kx0
2 ⋅

σx0

π 2gr

,         (8)

in which gr = 1-gxm
2/2γ 2zm

2 is the radial geometry factor [14].

g is the geometry factor, which is a function only of the aspect
ratio of the bunch, γ zm /xm , when image fields are negligible;

it is a function also of the pipe radius when image fields are
significant [14].  Without image fields, g can be approximated
as 2γ zm /3xm  when 1 <= γ zm /xm <= 4 with about 10%

accuracy.  Equation (8) applies for a continuous beam with gr

= 1.  The first example of a continuous beam with  ω p/ω  =

0.2 could therefore correspond to kx /kx0  = 0.5 and σx0 = 590.

The example of a bunched beam with γ zm /xm  = 2 and ω p/ω  =

0.3 could correspond to kx /kx0  = 0.5 and σx0 = 800.

Two uniform-density beams with the same energy,
current, space charge tune depression, and aspect ratio will
have different matched beam properties if one is in a periodic
quadrupole channel and one is in a channel with continuous
focusing, if both channels have the same effective focusing
strength in the absence of space charge.  With space charge,
the effective focusing strength of the periodic channel is
increased over that of the continuous channel, resulting in a
smaller phase advance per period, a higher average beam
density and a smaller average beam radius.

Reducing the frequency of the focusing increases the
dielectric response and increases the effective focusing strength
for a uniform-density beam, but also results in greater
oscillations of the matched beam envelope.  For applications
in which current loss into the conducting channel is an
important factor, the increase in the magnitude of the envelope
oscillations as the focusing frequency is decreased could lead to
greater particle losses even as the effective focusing field on
the beam core is enhanced.
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