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Abstract

Halo formation in high-intensity axisymmetric beams in
a periodic focusing channel is analyzed using particle-in-
cell simulations. In order to explore self-consistently the
fundamental properties of breathing round beams
propagating in a periodic focusing channel, the initial
phase-space distribution of a beam injected into a linac is
adopted to be a sufficiently realistic distribution such as
Gaussian, waterbag and parabolic. Numerical results such
as halo intensity and emittance growth are obtained by
means of multiparticle simulations.

1  INTRODUCTION

Recent interest in using high-current ion linacs for
production of tritium, the transmutation of nuclear waste,
etc. has enhanced activitities for halo study. It is necessary
to understand mechanisms of intense-beam losses,
especially, beam instabilities and halo formation, because
machines must operate with a very low beam losses to
avoid serious radioaction.

K-V distribution of particles in transverse phase space
is used to adopt to predict the behavior of real beam in
most theoretical studies [1,2]. Because K-V beam density
is uniform, then space-charge forces are linear. Particle-
core model has contributed to an understanding of the
underlying causes of halo formation from mismatched
beams [3-6]. In order to obtain more meaningful
simulation results nonlinear particle-density distributions
are adopted in a uniform channel [7-11], the codes
calculating space charge have been replaced by those with
more simple and accurate representation of practical
distributions [12,13]. Moreover, it is important to
understand the mechanism of halo formation in a periodic
focusing channel, since the periodicity of the external field
can cause a strong resonant instability [14,15]. The
chaotic behavior caused by structure-driven resonance has
recently been studied and connected with halo formation
[16-19]. We had investigated the mechanism which
enables some particles to escape from deep inside core in
a uniform channel [11]. In present paper, we discuss the
properities of halo formation in breathing round beams in
a periodic focusing channel.

We first describe the simulation method in section 2,
then apply the code to the phase-space distributions and
obtain some simulation results in section 3.

2  SIMULATION METHOD

The Hamiltonian  of the transverse motion is given by
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where m, q, βc denote, respectively, the ion mass, charge
and longitudinal velocity, κz(z), whose profile is shown in
Fig.1, is the periodic function representing the variation of
the focusing strength, and z is the distance measured along
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is the dimensionless transverse velocity with x x c' � /= β ,

y y c' � /= β , φ(r,z) is the space charge potential, which must
meet with the Poisson eqution:
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where ( ) ( )f r r z f x y x y z, ; , , ' , ' ;⊥ =  is the distribution

function in the transverse nonrelativistic four-dimensional
phase space.
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Figure 1: The profile of solenoidal periodic focusing field

All distributions that are function of the transverse
Hamiltonian H⊥  are stationary for a uniform focusing

channel because H⊥  is a constant of motion in this case.

However, in the case of periodic focusing channels H⊥  is

no longer constant, and the only stationary state for which
an analytic representation could be found is the K-V
distribution. For a more general investigation one must
rely on numerical simulations by means of adopting
nonstationary distributions. Here nonstationary
distribution functions used in computer simulation studies
are defined as functions of the radius in four-dimensional
trace space and not as functions of the Hamiltonian H⊥ .

For a detailed discussion of nonstationary distributions see
[20].
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In order to compare different distributions on the same
basis, we consider rms-equivalent beams  which have the
same perveance, rms radius, and rms emittance. To obtain
the rms radius, we introduce the envelope eqution:
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where a, Λ and κ(s) are dimensionless variables: s=z/S,
Λ=KS/ε, K is the generalized perveance, ε the emittance
and S is the periodic length of a single focusing cell, and
κ(s)=κz(z)S

2. The matched normalized radius a0(s) can
readily be derived from Eq.(3) when Λ and κ(s) are
determined. The vacuum phase advance over one axial
period of such a focusing field is approximately given by
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. Then we notice that a0(0)

corresponds to the minimum radius of a matched beam
because the original coordinate is located at the center of a
drift.

We determine the mismatched initial phase-space
distribution a ai = µ 0 , a ai' '= 0 µ , where a0 , a'0
correspond to the matched one, and mismatch parameter
µ ≤ 1. The radial space-charge field of an axisymmetric
beam can be calculated from Gauss law by counting the
number of particles in cells of a finite radial grid which
extends up to 5 times the beam matched radius. We
monitor the total energy through the transport channel,
and keep the total energy constant. Here we employ 104

particles and 100 radial meshes over the length
a a0 0 0= ( ) .

3 NUMERICAL SIMULATION RESULTS

We take into account the transport channel with enough
length so that the beam reaches saturated states before
arriving at the exit. Here the filling factor n seen in Fig.1
is 40 percent of the length of a single cell.

If an input beam is perfectly matched to a transport
system, there is no reason to expect the growth of  a halo
unless the distribution is intrinsically unstable against
perturbation or there is structure-driven resonances.
However, it is impossible to provide a perfect beam,
actually, there is an inevitable initial mismatch which
generates a halo.

We perform multiparticle simulations, to consider a
beam as realistic as possible, several different types of
initial phase-space distributions such as Gaussian,
parabolic and waterbag distributions are adopted.

3.1 Emittance growth of various nonstationary
distributions

To consider a beam as realistic as possible, several
various initial phase-space distributions such as Gaussian
(GA), parabolic (PA) and waterbag (WB) distributions are

adopted to estimate emittance growth. Figure 2 shows
emittance growth defined as the ratio of the final rms-
emittance to the initial rms-emittance vs the cell number
of the transport channel for tune depression η=0.4, which
is defined by η=σ/σ0, where σ is the space-charge phase
advance over one axial period of such a focusing field and
σ0=75°, and different mismatch parameter (a) µ=0.7, (b)
µ=0.8. From Fig.2 we can find that the more realistic the
distribution is, the smaller the ripple of emittance growth
changes through the transport channel.
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Figure 2: Emittance growth of various distributions vs cell
number for (a) µ=0.7, (b) µ=0.8.

3.2 The structure-driven resonance

The periodicity of the external field can cause a strong
resonant instability. Since the unstable particles can easily
escape from the core getting a large betatron amplitude, it
is necessary to investigate halo formation mechanism in
the structure-driven instability. The instability growth rate
increases with increasing σ0, and at sufficiently high
values of σ0 there is an intensity threshold beyond which
the beam is unstable for all values of σ→0 [20], that  is to
say, the second-order even mode occurs from the Vlasov
equation perturbation analysis. For σ0>90° and
sufficiently large Λ, the envelope oscillations become
chaotic for some mismatched beams [17].

Figure 3(a) shows emittance growth of rms-matched
beams with Gaussian distribution, the phase advance
without space charge is fixed at 1050. We find emittance
growth rises rapidly from η=0.23 to η=0.25, there is the
region where the second-order even mode exists. The
beam is trapped by the second-order resonance in the
phase-space configuration shown in Fig.3(b).

0

8

16

0.0 0.2 0.4 0.6 0.8 1.0

tune depression

em
itt

an
ce

 g
ro

w
th

-15

0

15

0 5
r/a0

r'

Figure 3: (a) Emittance growth of rms-matched Gaussian
beams vs η and (b) phase-space distribution of rms-
Gaussian beam at cell number=600 and η=0.245.
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3.3 Halo intensity and the maximal radial
extent

We firstly consider mismatched beams with Gaussian
distribution,  the phase advance without space charge is
65°,75°, 85°, respectively. The number of particles which
go into the halo seen in Fig.4, gets rather small as
mismatch parameter µ tends to 1.0. Here we define halo
intensity h as the number of particles outside the boundary
rb=1.75a0 divided by all of particles we employ.
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Figure 4: Halo intensity vs η for mismatch parameter (a)
µ=0.6, (b) µ=0.8, with different σ0: ◊-85°, ∆-75°, -65°.

In addition, let us look at Fig.5 where the maximal
radial extent rmax has been displayed. It is obvious that the
maximal radial extent is almost independent of σ0, but the
maximal radial extent is larger as mismatch parameter is
lower than 1.0.
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Figure 5: Ratio of the maximal radial extent to radius of
matched beam vs η for mismatch parameter (a) µ=0.6, (b)
µ=0.8, with different σ0: ◊-85°, ∆-75°, ×-65°.

4 CONCLUSIONS

It has been confirmed that the periodicity of the channel
induces resonant instibility in some region. There is no
prominent emittance growth in the region when σ0<90°,
however, the strong instibility, especially the second-order
resonance, occurs when σ0>90°, and emittance growth is
very large. Therefore, we do our best to set σ0 at a value
below 90° in a linear transport design. We can also set σ0

above 90°, but we need to select the region where there is
no resonance.

Simulation results show halo intensity and maximal
radial extent are more increased as the magnitude of initial
mismatch increases, and they is not dependent of the tune
depression when σ0<90°.
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