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Abstract

Optical models for a variety of electrostatic elements
have been developed for the computer code TRACE 3-D.
TRACE 3-D is an envelope (matrix) code that includes a
linear space charge model and is primarily used to model
bunched beams in magnetic transport systems and
radiofrequency (RF) accelerators.  New matrix models have
been developed that allow the code to be used for modeling
beamlines and accelerators with electrostatic components.
These new models include a number of options for
simulating:  (1) einzel lenses, (2) dc accelerator columns,
(3) electrostatic deflectors (prisms), and (4) electrostatic
quadrupoles.  A prescription for setting up the initial beam
appropriate to modeling 2-D (continuous) beams has also
been developed.  The models for (4) are described in this
paper and examples of their use are illustrated. The
relationship between the 3-D (bunched beam) and 2-D (dc
beam) space charge modeling is discussed and comparisons
of numerical results to other calculations are presented.

1  INTRODUCTION

The TRACE 3-D program [1] is one of the standard
codes used in the design of standing wave radiofrequency
linacs and transport lines for high-current bunched beams.
Considerable work has been done on extending the
program to model a new array of accelerator problems,
including wakefields [2], traveling wave structures [3], and
electrostatic lenses [4].  This paper describes recent work at
further extending the capabilities of TRACE 3-D.

2  ELECTROSTATIC QUADRUPOLES

Two electrostatic (ES) quadrupoles models have been
developed for use in TRACE 3-D.  One is a hard-edge
model where the magnitude of the quadrupole field is
constant over the quadrupole length and zero elsewhere.
The second models fringe fields as linear functions that act
over specified fringe field entrance and exit distances.

2.1  Hard-Edge ES Quadrupole

The first order optics for a particle moving in the
field of an ES quad are the same as those for the motion in
a magnetic quad using an equivalent field gradient B':

B' = 2Vo/(a
2βc)   , (1)

where Vo is the electrode voltage of the ES quadrupole, a
is the radial aperture of the ES quadrupole, and βc is the

velocity of the particle.  The hard-edge ES quad model [2]
in TRACE 3-D simply calls the hard-edge magnetic
quadrupole subroutine using a gradient given by (1).

2.2  ES Quadrupole with Fringe Field

Electrostatic quadrupoles with fringe fields are often
modeled in terms of a potential function of the form:

(x,y,z ) = + V(z ) (x 2 - y 2)/a2   , (2)

where V(z) is a smooth function used to model the
longitudinal variation of the quadrupole strength.  The
electric field is given by the gradient of φ: E = -∇φ .
However, this electric field does not, in general, satisfy
Maxwell's equation ∇• E = 0.  For the special case in
which V (z ) is a piece-wise linear (or constant) function of
z, then ∇• E = 0 almost everywhere.  The fringe field ES
quadrupole uses a function V (z ) which rises linearly from
zero to a maximum value Vo over an entrance length d 1,
remains constant at Vo for a distance given by the effective
electrode length l, and then decreases linearly to zero over
an exit length d 2.

2.3  R-Matrix Elements and Example

A first-order 6×6 transfer matrix (R-matrix) is used to
describe particle optics in the paraxial approximation.
The elements of the R-matrix are computed directly from
the electric fields using standard methods [4,5].  For the
fringe field ES quadrupole, the region over which the
fields act is divided into small steps of length ∆z and four
R-matrices are computed for each step:  a drift matrix [1]
of length ∆z /2, a lens matrix which computes the
quadrupole impulse, another drift matrix of length ∆z /2,
and a space-charge impulse matrix to model the linear
space-charge forces (described in Section 3).

The non-trivial elements of the quadrupole lens R-
matrix at location z  are:  

R21 = - R43 = - 2q∆z V(z )/(a2β2γmc2)   . (3)

Table 1 summarizes test TRACE 3-D
calculations carried out for the hard-edge and fringe-field
models with short fringe lengths, which are compared to
magnetic quadrupole results.  The fringe-field ES quad
calculations required a maximum step size of ∆z  = 0.1 mm
to obtain the results shown, whereas accurate results were
obtained for the magnetic and hard-edge ES quads with ∆z
= 2.0 mm.  Using the relation (1), the agreement is good
between all cases.
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Table 1.  Comparison of quad fitting (matching) results (Example B of reference [1] without RF elements) for hard-edge
ES quads, fringe-field ES quads (small d 1 and d 2), magnetic quads, and expected ES values from Eq. (1).

Quad Model MMF (10-6) Quad 1 (Vo or B') Quad 2 (Vo or B') Quad 3 (Vo or B') Quad 4 (Vo or B')

Magnetic 2 - 20.2647 T/m 22.4726 T/m - 19.6900  T/m 18.3534 T/m
Equation (1) - - 14.0189 kV/cm 15.5463 kV/cm - 13.6213 kV/cm 12.6967  kV/cm

Hard-Edge ES 17 - 14.0189 kV/cm 15.5464 kV/cm - 13.6214 kV/cm 12.6967 kV/cm
Fringe-Field ES 55 - 14.031 kV/cm 15.559  kV/cm - 13.629 kV/cm 12.706 kV/cm

3  2-D SPACE CHARGE MODELING

Space charge is treated in TRACE 3-D as a linear
force using the equivalent uniform beam model.  The
electric field components inside a uniformly charged 3-D

ellipsoid, with semiaxes given by rx, ry and rz, are [1]:

Ex (x,y,z ) = (κ/γ2) [(1-f(p))/(rx (rx +ry )rz )]x   , (4)

Ey (x,y,z ) = (κ/γ2) [(1-f(p))/(ry (rx +ry )rz )]y   , (5)

and E z(x,y,z ) = κ [f(p)/(rx ry rz )]z   , (6)

where κ=3λIb/(4πεoc), γ is the relativistic energy factor

of the beam, and f(p) is the 3-D ellipsoidal form factor.  
Ib is average beam current, where each bunch passes a
given point once per RF cycle (wavelength is λ) .  The

form factor depends on p=γrz /(rxry)
1/2: for p>1, f(p) is:

 f(p) = [pln [p+(p2+1)1/2]/(p2+1)3/2] - 1/(p2+1)1/2  . (7)

Equations (4)-(6) for the bunched beam electric fields
can simulate dc beam fields by taking appropriate limits.

3.1  Space Charge for Continuous Beams

For rz much larger than rx and ry, the 3-D ellipsoidal
beam bunch becomes elongated and the shape near the
center approaches that of a 2-D beam with an elliptical
cross section whose semiaxes are given by rx and ry.  The
electric fields in this case are obtained in the limit where p
becomes very large.  In the limit of large p, the 3-D
ellipsoidal form factor becomes:

f(p) = [ln((2p) - 1] / p2  , for p>>1. (8)

The electric field becomes:

Ex (x,y,z ) = (κ '/ γ2) [1/(rx (rx +ry ))]x   , (9)
Ey (x,y,z ) = (κ '/ γ2) [1/(ry (rx +ry ))]y   , (10)

E z(x,y,z ) = (κ '/ γ2) [[ln((γrz /(rxry)1/2 ) - 1]/(rz
2)]z , (11)

where κ'=(κ/rz).  The field components (9) and (10) are of
the same form [8] as those for a continuous uniformly
charged, 2-D elliptical cross section beam, with semiaxes
rx and ry, when the parameter κ'=Idc /(πεoβc). Idc is the
current for the continuous (dc) beam.  Consequently, the
transverse electric fields computed by TRACE 3-D are the
same as those for a dc beam if the bunched beam current is
related to the continuous beam current by:

Ib  = (4/3)(rz /βλ) Idc   . (12)

The longitudinal electric field (11) varies very slowly
(logarithmically) with the transverse beam dimensions,

and becomes small for large rz.  The bunch length rz will
not change due to the longitudinal space charge force if the
total beamline length L over which the envelope equations

are integrated is small compared to the initial rz.
Therefore, two conditions on the initial bunch length need
to be satisfied so that the bunched beam space charge
fields reduce to those for a continuous beam:

rz >> (rx ry )
1/2 / γ   and rz > L   . (13)

Both conditions are achieved in the normal situation
where the transverse dimensions are small compared to the
beamline length, and one selects an initial value for the
bunch length greater than L.  The longitudinal emittance
and Twiss parameters are:

 εz = rz (∆p /p)   π-meter-radian    , (14)

 αz = 0   , (15)

and βz = rz / (∆p /p)   meter/radian   , (16)

where rz is in meters and ∆p /p is the momentum spread.
Using the formulas (12) and (14)-(16), the TRACE 3-

D space charge fields reduce to those for a 2-D continuous
beam when the conditions (13) are satisfied.  

3.2  Comparisons to Semi-Analytic Calculation

The accuracy of the 2-D simulation has been verified
using TRACE 3-D by comparing the space charge radial
expansion of cylindrical beams with results for the semi-
analytic solutions.  Table 2 summarizes one comparison.

The space charge expansion of a zero emittance,
cylindrical beam can be expressed in terms of Dawson's
integral.  For a beam with radius ro and no divergence at
z=0, the downstream r and z are related by [7]:

(z/ro) = (2/K)1/2 (r/ro) D [ln((r/ro)
1/2]   , (17)

where D [ξ] is the value of Dawson's integral at ξ , and is
available in tabulated form [9].  K=2(Idc/Io) β

 -3γ-3 is the
generalized beam perveance and Io is the Alfven current.
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Table 2.  Comparison of the simulated beam radius, for the space-charge expansion of 10 keV, 2 Ampere, dc (2-D
uniform) e-beam, with the semi-analytic radius.  The beam's initial phase space parameters are given in the text.

Length Drift Drift ln(r /ro)
1/2 Radius (mm) Radius (mm) Deviation

z (mm) Number Length Semi-Analytic TRACE 3-D (%)

1.6368 2 1.6368 0.02 10.00400 10.00400 0.00000
3.2750 3 1.6382 0.04 10.01601 10.01603 0.00020
8.2104 4 4.9354 0.10 10.10050 10.10057 0.00069

16.5869 5 8.3765 0.20 10.40811 10.40850 0.00375
119.6891 6 103.1022 1.00 27.18282 27.19945 0.06118
332.4853 7 212.7963 1.50 94.87736 94.94152 0.06763
548.5548 8 216.0694 1.70 179.93310 180.04664 0.06310
724.5571 9 176.0023 1.80 255.33722 255.49130 0.06034
976.9775 10 252.4205 1.90 369.66053 369.87306 0.05749

The Alfven current Io=4πεo[mc3/q]=0.03335641
×[mc2(MeV)/q(e-)] amps.  The values ξ=ln((r/ro)

1/2 shown
in Table 2 were selected so that tabulated entries for D [ξ]
could be used to determine the corresponding values of z/
ro.  The perveance used (K=0.02986778) corresponds to a
2 amp, 10 keV beam with particle mass 0.511 MeV.  A
beamline of drift elements was constructed [10], whose
lengths correspond to the intervals between the values of
z/ro.  For a beam radius ro = 10 mm, the resulting drift
lengths and accumulated length z are given in Table 2.

The initial transverse phase space used values of
εx=εy=0.04 π-mm-mrad, βx=βy=2500 mm/mrad and
αx=αy=0.  For the longitudinal parameters (14)-(16),

initial values of ∆p/p =5×10-4 and rz=100 meters were
used.  Simulations using Ib=0 confirmed that no beam
expansion occurred due to finite transverse emittances.

The TRACE 3-D results shown in Table 2 used a
radiofrequency of 2.998 MHz (λ just under 100 meters).
Then, from Eq. (12), Ib=13.676 amps.  The TRACE 3-D
radii computed for this current agree with those from the
semi-analytic calculation to better than 7 parts in 10,000.
Other simulations to confirm the Eq. (12) scaling, and to
explore limitations imposed by (13), were also performed

with different λ, rz, Ib, and with equal perveance beams.

4  SUMMARY

Optical elements for electrostatic quadrupoles have
been developed for use in the TRACE 3-D code.  A
prescription for using TRACE 3-D to accurately simulate
dc space charge effects has also been developed.  Together
with einzel lens [4], acceleration column [5], and deflector
prism [6] models, TRACE 3-D has been expanded to
model a spectrum of electrostatic systems.
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