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Abstract

The nonlinear space charge effect of bunched beam in
linac is one of the important reasons that induce the
emittance growth.  The general formulas for calculating
the potential of space charge with nonuniform
distribution in surrounding structure are presented. For a
bunched beam with different distribution in waveguide of
linac, the expresses of the nonlinear field energy of a
cylinder model of space charge are derived, and the
numerical results of the nonlinear field energy for
different density distributions are given.  The emittance
growth caused by these nonuniformities are discussed.

1  INTRODUCTION

In high-current beam for Free Electron Laser (FEL)
and linear accelerator for high energy physics, induction
linac for heave ion fusion, microwave devices and other
applications, the space charge force is no longer small
compared with the externally applied focusing forces.
And the space charge effect is assumed to be one of the
fundamental factors governing the beam dynamics.

Since the theoretical study and numerical simulation
show that the nonuniform particle distributions have
more electrostatic field energy per unit length than that
of the equivalent uniform beam with the same current I,
rms radius, and rms emittance. Therefore, it is suggested
that  this additional field energy is converted into particle
kinetic energy and  caused emittance growth as the
distribution tends to become more homogeneous. This
concept has been already accepted by many studies.
Historically, the relationship between rms emittance and
space charge field energy term for a continuous beam in a
continuous focusing channel was firstly derived by
Lapostolle [1]. The rms envelope equation with space charge
was obtained by Sacherer [2]. An equation for emittance
growth in space-charge-dominated beam having nonuniform
density was derived by Struckmeier, Klabunde, and Reiser
[3]. For a round continuous beam with  an arbitrary
distribution in a linear focusing channel, a differential
equation for emittance change was derived by Wangler [4].
And, a generalized differential equation for a bunched beam
was derived by Hofmann and Struckmeier [5]. Also, there
are many further study results on the subject (see for
examples Ref. [6]  and  [7]).

We should point it out that the above results
concerning the calculation of the space charge field
energy are based on the assumption of a continuous beam in
a tube or a bunched beam in free space though involved with
different density distributions. There is an obvious difference
between these results and the reality of the electron (or ion)
bunched beam in a linear accelerator or some microwave
devices.

With regard to a bunched beam in surrounding
structures, the space charge effects of  nonuniform density
distributions in waveguide of  linac have been studied  in
our early work [8].  In this paper,  first we  review  the main
point of  Ref. [8] to give the general formulas for potential
induced by a cylinder of space charge with nonuniform
density distribution in a surrounding cylinder (Section 2); in
Section 3, for a bunched beam with nonuniform
distributions in waveguide of linac, we present the
expresses of  the nonlinear field energy of a cylinder model
of space charge; in Section 4, we show the numerical results
of the nonlinear field energy for different density
distributions; and finally, in Section 5, we discuss the
emittance growth for a bunched beam in linac.

2  GENERAL FORMULAS FOR
POTENTIAL OF NONUNIFORM

CHARGE DISTRIBUTION

For the convenience of understanding and application,
here we review the main point of Ref.[8] in which the
general formulas for calculating the potential of space
charge with nonuniform distributions in  waveguide have
been obtained.

A cylinder model of space charge is used to present a
space charge bunch in linac as shown in Fig.1.
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Figure 1.  Cylinder model of space charge.
Letting a as the accelerator waveguide radius, b and ±L/2

as the boundaries of the cylinder model in r and z directions,
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respectively. The potential induced by the space charge
bunch with uniform distribution ρ  in a cylindrical
coordinate system can be written as follows [9]:

( )0 0= f r, z; b, Lϕ ρ / 2 ,                                              (1)

where f0  is  the potential induced by a unit space charge
density.

According to the general formulas in Ref.[8], for the space
charge bunch model with nonuniform charge density
distribution ( ) ( ) ( )ρ ρ ρr, z = r z , we have the induced potential as

follows:
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Therefore, so long as the potential 0ϕ  ( in the form of Eq.(1))
induced by a space charge bunch model with uniform
distribution is known, the potential ϕ  induced by  the space
charge with the same model but nonuniform distribution can
be obtained from Eq.(2).

The potentials of a cylinder of space charge with uniform
density distribution inside a conducting cylinder have been
obtained : [9]
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where i lJ k x( )  is the Bessel function of the ith order, and lk  is
chosen so that 0 lJ k a = 0( ) . Substituting Eqs. (3) and (4) into
Eq. (2), we can rewrite the general formulas for calculating
the potential induced by the same cylinder of space charge
with nonuniform distribution as follows:

1,2

l=1

0 l 0 l

l 1
2

l
l

-k |z|
b

L

=
2

a
,

J k J k r

k a J k a
ch k e d d z

L
lϕ

ε
ρ ξ ζ

ξ ξ
ζ ξ ζ

0 00

2

2
( )

( ) ( )

( ) ( )
( ) ,

∞

∑∫∫ >





,(5)

( ) ( ) ( )
( ) ( ) ( )3

0 l=1

0 l 0 l

l 1
2

l
l

-k |z|
bz

=
2

a
,

J k J k r

k a J k a
ch k e d d +lϕ

ε
ρ ξ ζ

ξ ξ
ζ ξ ζ

∞

∑∫∫ 00

( ) ( ) ( )
( ) ( ) ( )+

2

a
,

J k J k r

k a J k a
ch k z e d d , |z|<

L

20 l=1

0 l 0 l

l 1
2

l
l

-k
b

z

L

l

ε
ρ ξ ζ

ξ ξ
ξ ζζ

∞

∑∫∫ 



0

2 .  (6)

Suppose that the density is given by

      ( )ρ ρr, z = Nt l t l, , ,                                                           (7)

where the normalization constants Nt,l are chosen to

satisfy 2
2

2

0

π ρ( , )r z rdrdz Nq
L

L
b

−∫∫ = , where N is the total number

of particles, the subscription t presents the distribution in
transverse direction and l represents that in longitudinal

direction. Therefore, t and l can be u (for uniform), w (for
waterbag), p (for parabolic) and g (for Gaussian).  We list all
possible combinations of the four distributions in Table 1,
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Table 1. Density Distributions

Distribution
in transverse

Distribution in longitudinal direction

direction uniform waterbag parabolic Gaussian

uniform ρu,u ρu,w ρu,p ρu,g

waterbag ρw,u ρw,w ρw,p ρw,g

parabolic ρp,u ρp,w ρp,p ρp,g

Gaussian ρg,u ρg,w ρg,p ρg,g

Substituting the density distributions of  Eq. (8) into
Eqs. (3) to (6), we can get the potentials induced by the
cylinder of space charge with different density
distributions. ( For details of the derivation see Refs. [10]
to [12] ).

3  NONLINEAR FIELD ENERGY OF
A CYLINDER OF SPACE

CHARGE IN LINAC

The nonlinear field energy of the cylinder model of space
charge in a waveguide of linac can be found by integrating
ϕdq over the entire volume occupied by the space charge: [9]
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Substituting the different density distributions of Eq.(8)
and the potentials ϕ induced by  these space charge in the
regime (|z|<L/2) from Eq.(6) into Eq.(10),  we get the self-
field energy of the cylinder of space charge in waveguide as
the following.

For a bunched beam with longitudinal uniform
distribution and different distributions in transverse
direction, we get:
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For a bunched beam with longitudinal waterbag
distribution and different distributions in transverse
direction, we get:
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For a bunched beam with longitudinal parabolic
distribution and different distributions in transverse
direction, we get:
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For a bunched beam with longitudinal Gaussian
distribution and different distributions in transverse
direction, we get:
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4  NUMERICAL RESULTS OF
NONLINEAR FILED ENERGY

As an example,  take a cylinder model of space charge
with total charge Nq=6×10-9 Coulomb in a surrounding
cylinder with radius a=0.015m. The calculations of
nonlinear field energy W  versus b/a of the bunch and wall
radius and b/L of the bunch radius and length are carried
out. The related plots for different transverse distributions
combining different longitudinal distributions are shown in
Figures 2 and 3. As can be seen,  first, the all nonuniform
particle distributions have more nonlinear field energy than
that of the equivalent uniform beam. Second,  the nonlinear
field energies increase as b/L increases and decrease as b/a
increases for all distributions. Thirdly, from Fig.2, it can be
seen that the smaller the b/a, the bigger the nonlinear field
energy W.  Therefore, it can be predicted, the nonlinear field
energy tends its maximum in free space for a space charge
bunch with any distribution.
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Figure 2.  Field energy W versus b/a of the bunch and wall radius for different transverse distributions and (a) longitudinal
uniform distribution; (b) longitudinal waterbag distribution; (c) longitudinal parabolic distribution; (d) longitudinal Gaussian
distribution.
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Figure 3.  Field energy W versus b/L of the bunch radius and length for different transverse distributions and (a) longitudinal
uniform distribution; (b) longitudinal waterbag distribution; (c) longitudinal parabolic distribution; (d) longitudinal Gaussian
distribution.
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5  EMITTANCE GROWTH FOR A
BUNCHED BEAM IN LINAC

The generalized three-dimensional equation for the
emittance and field energy of high-current beams in
periodic focusing structure was derived by Hofmann and
Struckmeier [5], and can be written for three degrees of
freedom x, y and z (with linear focusing in each plane) as:

( )1 1 1 32
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2

2

2

2

2
3 2
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d

ds y

d

ds z

d

ds m v N

d

ds
W Wx y z uε ε ε

γ
+ + = − − ,             (31)

where s=v⋅t , εx , εy and εz present rms emittance in x, y
and z directions, respectively,  W and Wu are the space
charge field energies of the real beam and equivalent
uniform beam.  The equation allows one to estimate the
total emittance growth if the change of nonlinear field
energy can be predicted.

In linear accelerator, the real beams have to be
considered in some channels. And hence, the nonlinear
field energy of the beam should be calculated in a
surrounding structure. It can be seen clearly, from the Fig.2
and Fig.3, the nonlinear field energies are not only
dependent of the ratio  b/L of the bunch  radius and length,
but also dependent of the ratio  b/a of  the bunch and wall
radius.  It is also true for the  free energy. Letting the
quantity Un:

( )U W W Wn u u= − .                                           (32)

Un is a measure of the nonuniformity of the charge density
and represents the field  energy which can be converted into
particle kinetic energy as the distribution tends to become
more homogeneous. And hence it leads the emittance
growth.  As some examples, taking Wu =Wu,u, and W  equals
to Ww,w, Wp,w, Wg,w, Ww,p, Wp,p, and Wg,p respectively,  we
obtain Un  versus b/a   for these  distributions as shown in
Fig.4.
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Figure 4. Free energy Un versus b/a for some  distributions.

Obviously, the emittance growth  caused  by the free
energy Un  will be  also dependent of the ratio  of  the bunch
and wall radius, and may tend its minimum in free space.
Therefore, it may be not enough to form a true estimation of
the emittance growth if the change of  nonlinear field energy
is  predicted  with  the value in free space in stead of  that in
a channel of linac.
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