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Abstract

An unstable electrostatic mode has been observed in
particle-in-cell simulations that, for unbunched ion beams
with sufficient intensity and thermal anisotropy, transfers
thermal energy from the transverse (?) to the longitudi-
nal (k) directions1�4. This instability can be important
and appears to be insensitive to the details of the initial
distribution as well as the nature of the applied focusing.
The unstable mode is characterized by an axial wavelength
comparable to the beam radius and growth rates compa-
rable to the frequency of? particle betatron oscillations.
We present a theory of this instability based on the work
of Wang and Smith5. This theory employs a continuous
focusing model in the limit of strong thermal anisotropy
with a warm,? KV distribution and a cold,k distribution.
The predicted mode structure is found to compare favor-
ably with simulations carried out over a range of space-
charge strength.

1 INTRODUCTION
In a continuous focusing (CF) channel, a thermal equilib-
rium (TE) beam distribution represents a stable, maximum
entropy state that an arbitrary initial distribution will relax
to under the influence of collisions6. Although collective
processes and phase mixing can enhance the rate of relax-
ation, the beam lifetime in the machine is often insufficient
to allow significant relaxation. Moreover, in real accelera-
tors, the focusing is usually periodic, and in this situation
there is no known TE distribution. Nevertheless, distri-
butions that more closely resemble a CF TE distribution
are expected to have less free energy to drive instabilities.
This renders thermodynamic concepts like beam tempera-
ture useful for non TE distributions.

Although temperature is, strictly speaking, a thermody-
namic quantity, one can define local kinetic temperatures
(energy units) byTi=2 = h(pi � hpii)2i=2m = mv2th;i=2,
wherem is the particle mass,pi is thei = x, y, z parti-
cle momentum,vth;i is theith local thermal velocity com-
ponent, andh� � �i denotes an average over the momentum
space degrees of freedom in the particle distribution. Here
and henceforth, we have adopted a nonrelativistic model
for simplicity in presentation. Differences in these kinetic
temperatures (or equivalently momentum spreads) provide
a measure of deviations from an isotropic TE, and such dif-
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ferences can provide free energy for so-called “equiparti-
tioning” instabilities that drive the beam closer to TE7.

?-k temperature anisotropies tend to naturally develop
in accelerators6;8. For example, consider an ion diode with
particle energyEb (� 50 keV typical) and source tempera-
tureT (� 0:1 eV typical). In the absence of?-k coupling,
one would expect the final axial (z-direction) temperature
to be strongly cooled withTz = T 2=2Eb. On the other
hand, one would expect little accelerative change in? tem-
peratures withTx = Ty � T , consistent with any? beam
compression,? instabilities, etc. These effects suggest a
strongly anisotropic beam emerging from the diode. Fur-
ther?-k anisotropy can develop in the transport following
the diode. Neglecting?-k coupling,Tz� ' const, where�
is the beam pulse duration, andTz will evolve consistently
with anyk beam expansion or compression during acceler-
ation. Some change inTz can also be caused by the ther-
malization ofk space-charge waves launched by accelera-
tion errors. On the other hand, nonlinear forces associated
with focusing aberrations and nonuniform space charge
(from instabilities, various beam manipulations, etc.), can
lead to increased? normalized beam emittance (/ rb

p
Tx,

whererb is the beam radius) while only producing small
changes inTz.

In high intensity applications such as Heavy-Ion Fusion
(HIF), the need for a small focal spot radiusrs leads to
interrelated constraints on the beam? emittance, space-
charge strength, andk momentum spread, as well as ma-
chine misalignments and abberations in the final focus
optic9. For a final magnetic optic, dispersion results in a
limit of allowable k momentum spread that can be esti-
mated as�p=p < rs=8�d. Herep = hpzi and�p =p
2h(pz � p)2i are the axial momentum and momentum

spread,d is the distance from the final optic to the focal
spot, and� is the beam convergence angle to the spot. This
typically results in spread limits of less than�p=p � 1%.
If the? andk beam temperatures must remain similar, this
will introduce an additional constraint that must be consid-
ered. Moreover, if any bends are present, dispersion can
result in further momentum spread limits that?-k equili-
bration can influence8.

In most accelerators, particle collision times are gener-
ally much longer than the beam lifetime in the machine.
Hence collision induced equipartitioning is usually negli-
gible. On the other hand, rapid kinetic instabilities can re-
sult in significant equipartitioning. Thus it is prudent to
understand any such instabilities so they can be properly
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accounted for in machine design.
In this paper, we present simulation (Sec. 2) and theory

(Sec. 3) on an intense-beam collective mode that produces
a rapid transfer of thermal energy from the? to thek de-
grees of freedom for sufficient?-k thermal anisotropy. The
beam is unbunched, and nonlinear space-charge forces as-
sociated with the unstable electrostatic mode produce this
energy exchange rather than?-k coupling induced by the
shape of the beam ends. For simplicity, all analysis is car-
ried out for an axisymmetric (@=@� = 0) beam propagating
without acceleration in a continuous focusing channel with
a linear radial focusing force. This focusing arrangement
can represent the average effects of a lattice of alternat-
ing gradient electric or magnetic quadrupoles, or a periodic
solenoidal magnetic field for a beam with zero total canon-
ical angular momentum10.

2 PIC SIMULATIONS
Particle-in-cell (PIC) simulations were carried out with the
electrostatic WARP code2;8. An axisymmetric (rz) pack-
age of the WARP code suite that neglects self-magnetic
field effects was employed with periodic boundary condi-
tions axially, and a grounded, perfectly conducting cylin-
drical beam pipe transversely. Simulations employed 100
k to 1 M particles, and typical grid dimensions consisted
of 32 radial and 256 axial zones. WhenTz was sufficiently
cold, Gaussian smoothing was employed in the axial direc-
tion to suppress ak numerical grid instability. The initial
? distribution of beam particles had zero canonical angu-
lar momentum and was either KV [uniform density and a
parabolically decreasing temperature profile in the radial
coordinater =

p
x2 + y2, see Ref. 6 and Sec. 3] or semi-

Gaussian (SG) [uniform density and a uniform temperature
Gaussian in?momentum space]. The initialk distribution
had uniform density and Gaussian momentum spread. The
instability is seeded from noise associated with the finite
particle statistics.

Typical runs employed: K+ ion atEb = hpzi2=2m = 10
MeV axial kinetic energy, equilibrium beam radiusrb =
2:5 cm, beam currentI = 5 A, and conducting pipe radius
rp � 2rb = 5 cm. The spatial average? beam tempera-
ture T̂x = T̂y = (2�

R rb
0 dr rTx )=�r2b was then consis-

tently set as follows (in an rms equivalent beam sense6 for
an initial SG distribution). Denote the angular frequency
of ? particle oscillations in the equilibrium fields in the
absence (i.e.,I = 0) and presence (specifiedI) of space
charge by�0 and�, respectively. Using the equilibrium en-
velope equation, these so-called “betatron” frequencies can
be expressed as10

�20 = 4T̂x=mr
2
b + !̂2p=2;

�2 = �20 � !̂2p=2 = 4T̂x=mr
2
b ; (1)

where !̂p is the beam plasma frequency. ThenT̂x was
set to achieve a specified tune depression�=�0 satisfying
0 � �=�0 � 1, where�=�0 ! 1 and �=�0 ! 0 cor-
respond to the warm- and cold-beam limits, respectively.

With T̂x fixed,�0 (i.e., the external focusing) was then set
consistently with Eq. (1). For�=�0 � 0:1 to 0:4, these
parameters are representative of those in the low energy
end of linear induction accelerators for Heavy Ion Fusion9.
Thek temperatureTz was set as a fraction of̂Tx. Axial grid
lengths were chosen sufficiently short for thek variations of
the unstable mode to be well resolved, but sufficiently long
where 5 or more wavelengths of variation were simulated
to reduce the influence of the periodic boundary conditions.
This resulted in grid lengths of 10 to 25 cm. Timesteps for
the particle advance were chosen such thatdt < 0:01=�0.
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Figure 1: Temperature anisotropyTz=T̂x (top, SG and KV)
and the log of the absolute value of the axial electric field
ln jEz j (middle for KV, and bottom for SG) verses the num-
ber of undepressed betatron oscillations�0t=2�.

Results of simulations illustrating properties of a space-
charge mode that transfers thermal energy from the? to the
k directions are presented in Figs. 1 and 2. The simulations
are for initial�=�0 = 0:45, Tz = 0:01T̂x, a13:4 cm axial
beam length, andrp = 2rb. Results are shown for both
initial KV (solid curves) and SG (dashed curves)? distri-
butions. In Fig. 1, the anisotropy ratioTz=T̂x is plotted as a
function of the number of undepressed betatron oscillations
of an equilibrium particle,�0t=2�, wheret is the time. Ev-
idently, in the initial quiescent period the growth inTz=T̂x
starts from the noise, followed by a period of exponential
growth, and then saturation withTz=T̂x � 0:4[0:1] (results
given for initial KV with SG values in “[]” brackets). This
instability leads to increasedTz and decreased̂Tx as energy
is exchanged. Phase space plots of the mode have been
presented elsewhere3;4. Also in Fig. 1, the log of the abso-

373



lute value of the axial electric field,ln jEzj, is plotted (arbi-
trary units) for a fixed location moving with the equilibrium
beam as a function of�0t=2�. Little variation in structure
is observed with the choice of location, suggesting an ab-
solute instability. These plots suggest that a single unstable
mode is dominating the evolution with an oscillation period
and e-fold time of approximately 3.2[2.8] and 0.82[1.1]
undepressed betatron oscillations, respectively. The ra-
dial and axial structure of the perturbed electrostatic poten-
tial Æ� describing this mode was extracted with a discrete
Fourier transform diagnostic. The dominant axial wave-
length� of Æ� was well expressed with�=rb = 1:3[1:1]
and the radial mode structure of this harmonic component
is shown in Fig. 2 for�0t=2� = 9:2[3:9]. Note thatÆ� is
peaked at the center with one radial node within the beam
(r < rb = 2:5cm) and has small amplitude outside the
beam (rb < r � rp = 5cm).
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Figure 2: Normalized electrostatic potential of the unstable
modeÆ�=Æ�(r = 0) verses radial coordinater.

The simulations indicate that the essential features of this
instability are similar for both initial KV and SG? distri-
butions. However, since the SG is not a real equilibrium,
the lack of detailed radial force balance influences the ini-
tial evolution of the mode, complicating the interpretation
of the onset of instability (note the shift in Fig. 1). More-
over, details of the saturation are different for the KV and
SG? distributions, with wave breaking in the KV distribu-
tion leading to a trapped particle phase-space that may rep-
resent an intermediate state on a longer timescale evolution.
The KV and SG initializations also have differing numer-
ical collision properties, further complicating interpreta-
tions. Preliminary data is presented in Table 1 on the space-
charge threshold (�=�0 less than indicated values leads to
instability) and the saturation level (inTz=T̂x) of the insta-
bility. Data is tabulated for both initial KV and SG? distri-
butions for several values of initial temperature anisotropy
(Tz=T̂x). Note that the threshold is a strong function of the
initial anisotropy and depends weakly on the type of ini-
tial distribution. Saturation occurs whenTz is a fraction
of T̂x, with the value depending on the initial anisotropy,
space-charge strength, and distribution type. Growth rates
of the unstable mode are larger for strong initial anisotropy
and space-charge strength. Smaller growth rates can ren-
der simulations difficult due to the noise associated with
the finite particle statistics.

Finally, previous studies1;4 suggest that the instability
only transfers? thermal energy to thek direction and

Table 1: Instability threshold and saturation properties.
Initial Threshold�=�0
Tz=Tx KV SG
0.001 0.69 0.74
0.01 0.76 0.80
0.1 0.48 ?

Initial SaturatedTz=Tx for Initial KV and �=�0 =
Tz=Tx 0.4 0.5 0.6 0.7 0.8
0.001 0.55 0.18 0.04 — —
0.01 0.59 0.31 0.07 0.09 —
0.1 0.42 — — — —

Initial SaturatedTz=Tx for Initial SG and�=�0 =
Tz=Tx 0.4 0.5 0.6 0.7 0.8
0.001 0.10 0.14 0.19 0.08 —
0.01 0.12 0.10 0.16 0.14 0.11

not vice-versa whenTz > T̂x. Full 3D simulations have
also been carried out with both alternating gradient and CF
channels and the results are similar those presented here.

3 THEORY
Neglecting particle correlations and collisions, the beams
simulated in Sec. 2 are described in terms of a single-
particle distribution functionf that is a function of the co-
ordinatex, momentump, and timet, and evolves accord-
ing to the Vlasov equation
�
@

@t
+
@H

@p
� @
@x

� @H

@x
� @
@p

�
f(x;p; t) = 0: (2)

Here,H = p
2=2m +m�20r

2=2 + q� is the Hamiltonian,
q is the particle charge, and� satisfies the Poisson equa-
tionr2� = 4�q

R
d3p f subject to the boundary condition

�(r = rp) = const. To perform a conventional equilib-
rium/stability analysis, we expand

� = �0(r) + Æ�(r; !; kz)e
�i(!t�kzz);

f = f0(x;p) + Æf(r;p; !; kz)e
�i(!t�kzz); (3)

where equilibrium quantities (superscript zero) correspond
to @=@t = 0 solutions to Eq. (2) withÆ� = 0 = Æf and
Æ� andÆf are normal mode perturbations with angular fre-
quency! and wavenumberkz = 2�=�. We assume a?
KV andk Gaussianf0 defined by6;10

f0 =
n̂

2�m
Æ
�
H0
? � 2T̂x

� exp
h
� (pz�mvb)

2

2mTz

i
(2�mTz)1=2

: (4)

Here,vb = hpzi=m is the axial beam velocity,Æ(x) is the
Dirac delta-function, andH0

?
= p

2
?
=2m+m�20r

2=2+q�0

with p? = pxx̂ + pyŷ. The form off0 is consistent with
undepressed and depressed? particle oscillations with fre-
quencies�0 and� given by Eq. (1) with!̂2p = 4�q2n̂=m
and beam edge radiusrb. For0 � r < rb, Eq. (4) also cor-
responds to uniform density,

R
d3p f0 = n̂ = const, and

a parabolic? temperature profile,
R
d3p (p2

?
=2m)f0 =

2n̂T̂x(1� r2=r2b ).
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The linear eigenvalue equation for the perturbed poten-
tial Æ� can be derived by linearizing the Vlasov equation
(2) and inverting the resulting equation forÆf with the
method of characteristics and inserting the result in Pois-
son’s equation. After some algebraic manipulation, this re-
sults in
�
1

r

@

@r
r
@

@r
� k2z

�
Æ� =

!̂2prb

4T̂x=m
Æ(r�rb) [Æ�+�1]jp?=0

+ !̂2p�(rb�r)
�
m2

p?

@

@p?
�1 +ik

2
z�2

�����
p2
?
=2m=Tx

; (5)

where�(x) is the Heaviside step-function, and�1 and�2
are equilibrium orbit integrals defined by

�1 = i

Z
d 

2�

Z 0

�1

d�

�

� i

k2zTz
m

�

�

� Æ�[~r(�)] exp

�
�k

2
zTz
2m

�2 � i
�

�
; (6)

�2 = i

Z
d 

2�

Z 0

�1

d� �Æ�[~r(�)] exp

�
�k

2
zTz
2m

�2�i
�
�
:

Here,Tx � 2T̂x(1�r2=r2b ),
 � !�kzvb, and the equilib-
rium characteristics are defined by~r2(�) � r2 cos2(��) +
(rp?=m�) cos( ) sin(2��) + (p?=m�)

2 sin2(��).
Equation (5) is a difficult integro-differential equation

that must be solved for
 andÆ� simultaneously. Wang and
Smith5 derived the dispersion relation corresponding to Eq.
(5) in the limit of infinite thermal anisotropy (Tz=T̂x ! 0
by coupling together earlier transverse solutions (Tz = 0
andkz = 0) by Gluckstern11 for kz 6= 0. In this procedure
Æ� is expanded within the beam (0 � r � rb) as

Æ�(r) = Æ�(r = rb) +
1X
n=1

AnÆ�n(r); (7)

where Æ�n(r) = (1=2)[Pn�1(1 � 2r2=r2b ) + Pn(1 �
2r2=r2b )] is an nth order ? Gluckstern eigenfunction,
Pn(x) is anth order Legendre Polynomial, andÆ�(r = rb)
is the potential at the beam edge (generally nonzero). The
expansion coefficientsAn generally depend onkz and

and satisfy recursion relations, which together with an in-
terface (r = rb) jump condition onÆ�, yields a dispersion
relation expressible in terms of an infinite determinant.

Approximate numerical solutions to this dispersion rela-
tion can be found by truncating the series [n < nmax in
Eq. (7)] to obtain a finite determinant dispersion relation5.
Solutions for
=�0 = (! � kzrb)=�0 are parameterized
by �=�0, kzrb, andrb=rp. The number of distinct mode
branches found isnmax(nmax + 2) or (nmax + 1)2 for
nmax even or odd. The branches are characterized ac-
cording to their limiting properties. Forkzrb ! 0,
nmax(nmax + 1) branches corresponding tonth order?
Gluckstern modes11 are found (labeledTn) with Æ� /
Æ�n for r � rb and Æ� = 0 for r � rb. Properties
of this ? limit dispersion relation have been described

elsewhere10;11. For long wavelength perturbations with
kzrb � 1 andT̂x ! 0 (� ! 0), a single branch (labeled
L1) corresponding to an “ordinary” cold-beamk mode is
found. This limiting form mode hasÆ� / I0(kzr) for
r � rb with I0(x) a 0th order modified Bessel Function and

2 = (!̂2p=2)(kzrb)

2 ln(rp=rb). Other branches (labeled
Ln with n = 2; 4; � � � ; nmax � 1 or nmax) are found to
reduce for long wavelengths (kzrb � 1) and weak space-
charge (� ! �0) to reduce to a little known class of?
coupledk modes. These modes haveÆ� / Æ�n within the
beam and


2 =
!̂2p

8n(n+ 1)
(kzrb)

2

Z 2�

0

dx

2�
Pn(cosx):

In general, a largenmax truncation will result a high-
order polynomial dispersion relation with many branches;
some of which describe low-order modes and others, high-
order modes. One takesnmax sufficiently large to accu-
rately represent modes of interest, but small enough to re-
duce the number of branches and facilitate mode identifica-
tion. Instabilities arise in parameter regimes where two or
more branches of
 “collide” and coalesce. Unfortunately,
many of these instabilities, particularly higher-order ones,
are associated with unphysical features of the KV model10.
Nevertheless, we believe that a low-order confluent branch
where theT2 andL2 branches coalesce describes the insta-
bilities observed in Sec. 2. This low-orderT2-L2 confluent
branch may also represent a non-pathological KV instabil-
ity that persists for more realistic (non-singular) equilib-
rium distribution functions.

Comparisons between the confluentT2-L2 mode branch
and simulations are presented in Figs. 3 and 4. All sim-
ulations were seeded from noise and it is assumed that a
single unstable mode dominates the evolution. In the the-
ory, annmax = 4 truncation was employed. In Fig. 3, the
radial eigenfunctionÆ� of theT2-L2 mode (kz selected for
maximum growth rate) is compared with simulation and
? (kz ! 0) theory for �=�0 = 0:45 and rp=rb = 2.
Note that theT2-L2 has similar structure to the? T2 mode,
but has finite amplitude at the beam edge (r = rb) and is
unstable, in contrast to the? mode. Also in contrast to
the? T2 mode, whereÆ�2 is independent of!, the ra-
dial structure ofÆ� varies with
 and kz for the T2-L2

mode. In Fig. 4 the normalized axial wavenumber, oscil-
lation frequency, and growth rate of theT2-L2 mode is
compared to the simulation results over the range of space-
charge strength0:3 � �=�0 � 0:5. The theory curves
were generated employing the wavenumberkzrb with max-
imum Im
=�0 growth rate at specified�=�0. The spreads
about the simulation points indicate measurement uncer-
tainties. For�=�0 � 0:4 the theory agrees reasonably well
with the simulations outside of a slightly lower simulated
growth rate that is likely due to the finite axial temperature
employed in the simulations (initialTz < 0:01T̂x). For
�=�0 < 0:4, low-order KV instabilities of theT2, T3, and
T4 ? Gluckstern modes10 may produce the systematic de-
viations observed from the results predicted by theT2-L2
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branch. Extension into this strong space-charge regime will
likely require systematic mode seeding to avoid exciting
such unphysical? KV instabilities. Approximate expres-
sions for the mode density, temperature, and flow velocity
perturbations have been derived from a fluid theory10 (us-
ing the kinetic theory dispersion relation) for use in future
mode seeding studies.
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Figure 3: Eigenfunction comparisons for simulation
(solid), 3DT2-L2 confluent mode theory (dotted), and?
T2 mode theory (dashed).
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Figure 4: Normalized mode axial wavenumber (kzrb), os-
cillation frequency (Re
=�0), and growth rate (Im
=�0)
verses tune depression (�=�0) from theory and simulation.

4 CONCLUSIONS
Simulation and theory have been presented characterizing
an electrostatic instability that can transfer thermal energy
from the? to thek directions for an intense, unbunched
beam with sufficient thermal anisotropy (Tz=T̂x < 1).
General features of this instability are insensitive to the
specific form of the applied focusing and initial distribu-
tion, and therefore, a? KV model was used to explore
the idealized mode structure. The instability has short ax-
ial wavelength (� � rb) with growth rates and oscilla-
tion frequencies comparable to the depressed betatron fre-

quency (Re
 � Im
 � �). The unstable mode has an
anisotropy (initial value ofTz=T̂x) dependent threshold in
space-charge strength (�=�0) and saturates when thek tem-
perature (Tz) is a fraction of the? temperature (̂Tx). Since
k accelerative cooling and? emittance increases can con-
tribute to the anisotropy that drives the instability, the mode
needs to be better understood to access impact on machine
design. The energy exchange associated with the instability
leads to decreased? emittance with increasedk momen-
tum spread. Whether this effect is beneficial or harmful
will depend on the details of a particular application. Pos-
sible consequences of the instability can be estimated by
assuming thatTz remains saturated during transport at a
set fraction ofT̂x if significant?-k anisotropy would have
developed in the absence of the unstable mode. Equiparti-
tioned design concepts have also been applied to bunched
beams in rf linacs12, where the? andk focusing can be
adjusted to maintain equilibration. Proper modeling this
instability also has implications for simulations, since it re-
quires the resolution of short axial wavelengths in simula-
tions of long, “unbunched” beams.
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