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Abstract

One of the challenges in tracking intense beams
through linacs is to account for the differences in non-
linear forces experienced by portions of the beam separated
by large regions of phase space. In many situations, the
high-order maps generated by a single fiducial trajectory
fail to capture or describe the dynamics of distant particles
within the beam. I describe here a technique which
overcomes this difficulty by piecing together lower-order
maps induced by multiple fiducial orbits. This atlas of
maps can more accurately track the evolution of a beam
spread over a large phase space region. I discuss
applications of this technique to simulating beam
dynamics in two-beam accelerators.

1  INTRODUCTION
Particle dynamics in relativistic klystrons pose several

thorny problems for simulations. Possibly the most
important element of the dynamics in a relativistic
klystron two-beam accelerator (RK-TBA) [1] occurs in the
longitudinal phase space. The beam is modulated at high
frequencies (11 - 40 GHz), and each bunch carries a charge
of 10’s-100’s of nC. Space charge effects will produce
debunching forces (a capacitive impedance) which is
counteracted by (inductively) detuning the rf output
structures. A bunch will undergo numerous synchrotron
oscillations during transport through the full-scale device.
Also, the bunches are not short compared to the rf
wavelength; they typically subtend 60°-120° of rf phase.
Hence, they sample very non-linear fields in the rf output
structures.

From this description we can identify the main
problems present in a device simulation. The beams are
sufficiently intense that space charge forces present more
than a small perturbation. The beamline elements are
necessarily spaced close together, and this requires
treatment of overlapping, non-linear fringe fields.
Transverse focusing is strong so that a complete betatron
oscillation occurs between rf output cavities (~1 m).
Transverse emittance, while low, is still sufficiently large
that particles at the beam edge sample significant non-
linearities present in the beamline elements. The
instantaneous energy spread is large (~10%) to handle the
low-frequency BBU, and to produce the bunching by rf
rotation. The particle simulation, of necessity, must track

many, many particles to provide adequate sampling of
both the beam phase space and the fields experienced.

One of the main disadvantages of tracking by mapping
can be seen immediately. The resultant map is
fundamentally a power series expansion about the initial
and final coordinates of the fiducial orbit. When the extent
of the beam distribution in phase space is no longer
‘small’ in some sense, then the map generated about the
given fiducial orbit loses accuracy when applied to the
outlying particles. There are various solutions that may
be applied to this problem. The pre-calculated fiducial
may not faithfully represent the orbit of the beam
centroid, but another fiducial may be found which does.
The order of non-linearity carried by the calculation may
be too low to adequately describe the given external field
structure. Increasing the order of the calculation may be
sufficient. However, these ‘fixes’ make for a good
solution only when the beam occupies a small enough
region of phase space such that a single fiducial orbit and
the map it induces captures the essential dynamics.

In many applications of intense, modulated beams,
however, this is not the case. These beams are most often
present in single pass, linear beamlines, with constantly
changing parameters. The beams may also have a
relatively long pulse length with respect to any time-
dependent rf fields they encounter. To sufficiently capture
that interaction via a single map would require a degree of
non-linearity far too high, and involve the computation of
too many map coefficients, that the intrinsic efficiency of
the method would be quickly lost. This problem is only
compounded when self-field effects are included.

2  CONSTRUCTION OF A MULTI-
FIDUCIAL MAP

The construction and evaluation of the multi-fiducial
map upon the particle coordinates is straightforward.
Algorithmically, it may be described by a sequence of
simple steps. In any calculation, the beamline under
consideration is initially divided into a set of mapping
intervals. Beam particles are propagated by mapping
successively through each interval. We define a ‘center’
fiducial as a single orbit that continuously threads through
all the mapping intervals. This single fiducial is
important to maintain as it provides a single reference
frame, and hence a reference ‘clock’ and ‘meter stick’, for
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the problem. Each mapping interval is defined by referring
to the coordinates of this center fiducial.

For each interval, the beam phase space is partitioned
and a set of nominal values of coordinates are selected,
one set for each region. These nominal coordinate sets
provide the initial values for ‘sub-fiducials’ and their
associated maps to be constructed. The particles in each
region are then propagated according to these local maps.
The number and method of partitioning is highly
dependent upon the physics to be modeled. Partitioning
should represent a balance between the order of non-
linearity carried by the calculation, the degree of non-
linearity present in the external fields and sampled by the
beam, and the non-homogeneity of the beam density
profile when self-fields are a concern. For example, in a
magnetostatic transport region, only a single fiducial and
map may need to be calculated. Whereas, in a region with
time-dependent rf fields where the wavelength and period
of the external fields is comparable to the bunch length
and transit time of the beam, then perhaps 10 or more
fiducials may be required. When self-field effects are
included, the number of partitions may depend upon the
non-uniformity of the beam density profile.

3  LONGITUDINAL BEAM DYNAMICS
IN AN RF CAVITY

As an example to illustrate the method, I consider the
problem of tracking a bunched beam through an rf cavity.
Here, I follow only a single bunch, where the modulation
carried by the beam is comparable to the rf period of the
cavity, as in the case of an RK-TBA. Also, I will only
consider the longitudinal phase space. The center fiducial
is placed at the center of the beam distribution, with the
sub-fiducials at locations that span the interval in arrival
time (t) of the bunch at a given beamline position (z).
The initial bunch distribution and fiducial positions is
shown in Figure 1.

Figure 1. Initial fiducial coordinates and beam
distribution in longitudinal phase space.

Figure 2. Fiducial trajectories in an rf cavity

3.1 Fiducial Particle Trajectories

The fiducial trajectories are calculated using the exact
single-particle equations of motion. During transit
through the rf cavity field, different fiducials will
experience different forces due to arrival time differences.
The final coordinates of the various fiducials will
generally differ in a non-linear way. The fiducial
trajectories in this case are shown in Figure 2.

Figure 3. Final longitudinal beam distribution under a
3rd order map with multiple fiducials

3.2 Comparison of Single Vs. Multiple Fiducial
Calculation

The maps induced by the fiducial orbits can, in
principle, be calculated to arbitrary order. The accuracy of
the mapping for outlying particles is determined by this
order parameter. In Figure 3 is shown the results of the
mapping through the rf cavity for two cases. The first
case uses a 4th order Hamiltonian, with a single fiducial
(identical to the center fiducial in Figures 1 and 2). The
second case uses a 3rd Hamiltonian, but with 11 fiducials.
In the first case, the combined effect of sampling only
low-order field variations and tracking outlying particles
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leads to inaccuracies. The final distribution suffers
additional local energy spread growth, and does not exhibit
the appropriate curvature, as seen in the head of the
bunch. The second case avoids these problems by
sampling the fields at the location of the outlying
particles. The effects of errors in the field evaluation and
in large coordinate deviations between particles and their
associated fiducials are kept small.

4  INCLUSION OF SELF-FIELD
EFFECTS

4.1 Split Operator Algorithm

Two separate mappings are applied to the particle phase
space coordinates using split-operator techniques [2].
These techniques are based on splitting the Hamiltonian
into pieces that can be solved exactly (or through some
desired order of accuracy), and then combining the separate
maps to produce an approximate map for the full
Hamiltonian. Split operator symplectic integration
algorithms, including the well known ‘leap-frog’
algorithm of plasma physics simulations [3], are widely
used in the treatment of Hamiltonian systems.

The total Hamiltonian is represented in the form

Htot = Hkin + Hext + Hself , (1)

where Hkin is the kinetic portion describing single-
particle motion in the absence of all fields, Hext is the
contribution from external fields, and Hself is the
contribution from self-fields. The maps from the first two
contributions are calculated together, while the map
resulting from self-forces is calculated separately. A
combined map is then produced to advance particles over
an interval τ. Accurate through second order in this step,
the combined map is expressed as

Mtot(τ) = Mkin+ext(τ/2) Mself(τ) Mkin+ext(τ/2). (2)

The self-fields are determined by numerical solution of
Poisson’s equation on a 3-D Cartesian grid in the beam’s
rest frame. Standard techniques are used to solve for the
fields at the grid nodes. For accurate representation of the
3-D fields from a bunched beam, we may use grid sizes up
to 64x64x512 nodes, as well as 104-105 macroparticles.

4.2 Changing Representations

Since we are solving the Maxwell equations at a given
instant in time, the particle distribution be represented at a
given moment. However, for the single particle maps, we
represent the particles at a given beamline location (z),
with a spread in arrival time (t). To faithfully calculate the
self-forces, then, we must change the distribution from a
‘constant-z’ to a ‘constant-t’ representation.

The multi-fiducial approach again provides some
utility. A visual aid to the process of changing

representations is provided by the ‘world-line’ diagram of
the fiducials, Figure 4. The fiducial trajectories (z vs. t)
are shown as world-lines. The constant-z beam
distribution is shown as black line segments. The first
step is to calculate the motion of the sub-fiducials about
the center fiducial, and the associated non-linear maps.
This brings all the fiducials to the same time, but at
different beamline positions (green lines and arrows). The
particles attached to a given sub-fiducial are still spread in
time (red line segments). The last step is to apply a linear
transformation to all the particles associated with a given
fiducial, to bring them to the nominal time (blue line
segments). The beam distribution now exhibits a spread
in beamline position consistent with observation at a
given moment in time.

Figure 4. Changing beam distribution representation
from constant-z to constant-t.

5  CONCLUSIONS
I have presented a new method for improving the

accuracy of tracking algorithms, by using low-order
integrators and multiple fiducials. Extensions to self-field
calculations have also been made.
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