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Abstract 
RF-dipole crabbing cavities are being considered for a 

variety of crabbing applications. Some of the applications 

are the crabbing cavity systems for LHC High Luminosity 

Upgrade and the proposed Electron-Ion Collider for 

Jefferson Lab. The design requirements in the current 

applications require the cavities to incorporate complex 

damping schemes to suppress the higher order modes that 

may be excited by the high intensity proton or electron 

beams traversing through the cavities. The number of 

cavities required to achieve the desired high transverse 

voltage, and the complexity in the cavity geometries also 

contributes to the wakefields generated by beams. This 

paper characterizes the wakefield analysis for single cell 

and multi-cell rf-dipole cavities. 

INTRODUCTION 

In rf cavities electromagnetic fields are excited by the 
charged particle beam traversing through the cavity, which 
then may affect the dynamics of the beam itself. A bunch 
on-axis can generate longitudinal wakes and a bunch at an 
offset may generate transverse wakefields [1]. 
Longitudinal wakefields can cause power losses in the 
cavity and increase in energy spread in the beam. Similarly 
transverse effects can amplify the effects leading to beam 
instabilities.  

The wakefield effects can be characterised into wake 
potentials and wake impedances. These excited wakefields 
then can be related to the higher order modes (HOMs) 
present in the cavity. 

Wake potential is defined as the change of momentum in 
a charge particle following a bunch with charge Qb at a 
distance s. The longitudinal wake potential is calculated by 
integrating the longitudinal electric fields as 
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and the transverse wake potential is given by 
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The transverse wakefield is calculated with the integrated 
the wake potential at an offset from the beam axis and 
using the Panofsky-Wenzel theorem [2] as shown in Eq. 
(3). 
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Wakefield impedance in frequency domain is derived by 
applying the Fourier transformation on wake potentials.  
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The wake potentials are generated for a Gaussian form 
of bunch charge distribution (Q(s)) given in Eq. (5) with 
bunch length (σz) and charge per bunch (Qb). 
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The frequency spectrum of the Gaussian charge 
distribution is specified as 
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gives the frequency range of which wake potentials are 
evaluated. The loss factor for the longitudinal wakes are 
determined by 
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Similarly the kick factor for transverse wakefields are 
defined as 

 
0

1
( )dst tk W s s

r



                           (8) 

where r0 is the offset from beam axis at which wake 
potentials are evaluated. 

This paper presents the wakefields analysis for the two 
rf-dipole crabbing cavities of 400 MHz for LHC High 
Luminosity Upgrade and 952.6 MHz cavity for Jefferson 
Lab Electron-Ion Collider.  

400 MHz CRABBING CAVITY 

 

Figure 1: 400 MHz rf-dipole crabbing cavity. 

The 400 MHz rf-dipole crabbing cavity shown in Fig. 1 
is one of the two crabbing cavities designed for LHC High 
Luminosity Upgrade [3]. The crabbing cavity is expected 
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to deliver a transverse momentum in the horizontal to crab 
the beam at the interaction point for CMS experiment in 
LHC. The crabbing cavity has two HOM couplers: a 
horizontal HOM (HHOM) coupler and a vertical HOM 
(VHOM) coupler [4]. The HHOM coupler is a high pass 
filter that damps the horizontal dipole modes and some of 
the accelerating modes. The VHOM coupler supresses the 
vertical dipole modes and some accelerating modes that are 
not damped by the HHOM coupler. The coupling strength 
with the corresponding impedance for the crabbing cavity 
is shown in Fig. 2. 

 

Figure 2: Longitudinal (Zacc) and transverse impedances 
(Zdip-X/dip-Y) of the 400 MHz crabbing cavity. 

The LHC beam parameters of the proton beams for the 
luminosity upgrade are listed in Table 1 [5]. 

Table 1: HL-LHC beam parameters 

Parameter Value Units 

Beam energy 7 TeV 

Beam current 1.02 A 

Bunch spacing 25 ns 

rms bunch length (σz) 7.55 cm 

The proton beam in LHC doesn’t follow a precise 
Gaussian form. Therefore, a beam with a σz of 5 cm was 
considered to evaluate the HOM excitation beyond 2 GHz. 
The bunch charge distribution is shown in Fig. 3. The 
wakefields were calculated using CST Wakefield Solver.  

 

Figure 3: Charge distribution. 

 Longitudinal and transverse wake potentials were 
obtained for a single bunch of 1 nC charge for wakefields 

with lengths of 100 m and 500 m. The transverse wake 
potentials are calculated by simulating two parallel beams 
of opposite charge passing through the cavity with an offset 
of 5 mm from the beam axis. The normalized longitudinal 
wake potential and wake impedance are shown in Fig. 4. 
The wake fields decay completely for a single bunch beam 
excitation. 

 

 
Figure 4: Longitudinal wake potential (top) and wake 
impedance (bottom).  

The amplitude of the wake impedance of the excited 
HOMs are effectively resolved at wakefields with longer 
length. The estimated loss factor (kcc) is 0.176 V/pC where 
the power loss due to the excited monopole modes is 4.5 
kW. The transverse wake impedance in both horizontal and 
vertical directions are shown in Figs. 5 and 6. The 
corresponding kick factors are kx = 0.41 V/pC/m and ky = 
0.06 V/pC/m. 

 
Figure 5: Transverse wake impedance in horizontal 
direction.  
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Figure 6: Transverse wake impedance in vertical 
direction.  

952.6 MHz CRABBING CAVITY 

A 952.6 MHz multi-cell rf-dipole as shown in Fig. 7 is 
considered as the crabbing cavity for the proposed 
Jefferson Lab electron-ion collider in crabbing both 
electron and proton beams [6]. The design with varying 
beam aperture is investigated to study the effects due to 
wakefield excitation. 

 

Figure 7: 952.6 MHz multi-cell rf-dipole cavity. 

A single bunch with a Gaussian charge distribution and 
σz = 3 cm was used to analyse the wakefield effects on the 
multi-cell cavity with beam apertures of 50 mm, 60 mm, 
and 70 mm for a wake length of 300 m. The preliminary 
analysis for the bare cavities shows similar HOM 
excitation as shown in Fig. 8. The smaller beam aperture 
has wider HOM separation and large beam aperture has 
low cut-off frequency that makes extraction of HOMs 
easier. 

CONCLUSION 

The wakefield analysis for the crabbing cavities was 

carried out for short range wakefields with single bunch. 

The 400 MHz crabbing cavity requires the study of multi-

bunch long range wake field analysis to fully resolve the 

accelerating and dipole HOMs. The loss factor estimates 

the HOM power loss in kW range due to the monopole 

modes. The cavity asymmetry contributes to the different 

kick factor in transverse impedance. 

The 952.6 MHz crabbing cavity was studied to 

determine the dependence due to beam aperture on the 

effect on wakefield excitation. Further study including 

HOM couplers is required to accurately estimate losses due 

to HOMs. 

 

 

 

Figure 8: Longitudinal and transverse wake impedances 
for multi-cell rf-dipole cavities with beam apertures of 
50 mm (top), 60 mm (middle), and 70 mm (bottom).  
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