
INVESTIGATION OF 2D PBG-WAVEGUIDES FOR  
THz DRIVEN ACCELERATION 

A. Vint and R. Letizia, Cockcroft Institute/Lancaster University, WA4 4AD, Warrington, UK  

Abstract 
There is significant interest in novel accelerating tech-

niques which can overcome the limitations of convention-
al radio-frequency (RF) based devices in terms of fre-
quency, gradient, and footprint. Moving from the RF to 
the terahertz (THz) frequency range, higher accelerating-
gradient of high-energy beams can be achieved, as well as 
structure miniaturisation. Furthermore, in respect to the 
optical frequency range, THz allows for larger structures 
and better beam quality. This work has been investigating 
the use of a 2D photonic-bandgap dielectric waveguide 
(PBG-W) for THz-driven electron acceleration which 
could potentially offer a good compromise between dis-
persion engineering, low losses and ease of parallel illu-
mination. Dispersion characteristics of the accelerating 
mode are studied to achieve the best compromise between 
high accelerating field and effective accelerating band-
width, assuming a ~10% bandwidth of the THz driving 
pulse. 

INTRODUCTION 
With current state-of-the-art particle accelerators reach-

ing several kilometres in size, a paradigm shift is required 
for future technologies to prevent them becoming unat-
tainable. Terahertz (THz) frequencies offer the opportuni-
ty to build micron-scale structures, and the use of dielec-
trics over metal offers the ability to push fields higher due 
to the increased breakdown resistance—or fluence 
threshold. Additional benefits over optical frequencies, 
which similarly exhibit the prior stated benefits of THz, is 
the larger aperture sizes allowed for the beam and the 
higher bunch charges THz affords beams to use. 

In conventional RF-driven accelerators, sources are 
typically narrowband—usually on the order of a few 
percent. In the regime of ultrashort THz pulse, broad 
bandwidths are generated and require a more careful 
study of the beam-pulse interaction. Much of the current 
work investigating THz acceleration has focused on the 
use of corrugated and dielectric-loaded waveguides 
(DLWs), of both rectangular and cylindrical geometry. 
While these devices are effective, they are hindered by the 
use of metal walls—which at THz frequencies exhibit 
large ohmic losses. [1] Due to the wavelength scales of 
THz, employing photonic-crystal (PhC) theory for con-
finement instead of metal walls can offer low ohmic loss-
es and high fluence threshold. Moreover, the design flexi-
bility offered by PhCs can potentially aid the tailoring of 
the accelerating mode dispersion for the THz acceleration 
regime. 

For comparison with other designs such as the DLW 
proposed in [2] and ease of realisation, a rectangular 
waveguide configuration is chosen. This work focuses on 

waveguides based on a 2D-PBG slab structure with a 
triangular lattice of air/vacuum holes, offering a good 
compromise between design flexibility and ease-of-
manufacture. 

PBG-WAVEGUIDE DESIGN 
Using MPB [3], initial 2D simulations of the PhC unit 

cell were carried out to optimise the fill factor of the PBG 
structure for maximum bandgap around the central fre-
quency of 1 THz. The dielectric material used was silicon 
with relative permittivity ~11.6. The maximum pho-
tonic bandgap (PBG) was found to be at a radius of =0.445  yielding a bandgap of 50% in the normalised 
frequency region of 0.29-0.48 /2 , where  is the 
angular frequency,  is the PhC period, and  is the speed 
of light. The schematic of the proposed PBG-waveguide 
is shown in Fig. 1. 

 

 
Figure 1: Schematic of three longitudinal unit cells of the 
PBG-W, with z-axis being direction of propagation.  

The PBG-W is then realised by introducing a line de-
fect along the longitudinal direction z across the PhC 
lattice for confinement of specific electromagnetic states 
(as propagating modes) within the PBG. In the case of 
DLWs, the modes can be described as a superposition of 
both TE and TM modes as the longitudinal-section mag-
netic (LSM) mode if either x or y components of the 
magnetic fields is set to 0, likewise longitudinal-section 
electric (LSE) if one of the transverse electric fields is set 
to 0 [4]. 

PBG-Ws such as shown in Fig. 1 are both nonhomoge-
neous and anisotropic—as such, they cannot support true 
LSE/LSM modes. At lower wavenumbers however, these 
modes serve as a good approximation for the PBG-W 
modes. Higher wavenumbers often exhibit higher levels 
of coupling to the dielectric over the waveguide channel 
which modifies the dispersion curve.  
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To design the PBG-W, initially 2D models were inves-
tigated where the channel width and pad layer thickness 
(Fig. 1) were varied based on the work by Cowan [5]; 
allowing for a suitable dispersion of the accelerating 
mode at the point of interaction with =  and =1 THz 
to be found at channel width ~ 3a and pad-layer ~ 0.1a. 
This provided a starting point for the design of the 3D 
waveguide and its optimisation for highly-relativistic THz 
acceleration.  

A 3D PBG-W was then designed considering a finite 
thickness of the dielectric slabs bound with metal. It was 
found that the accelerating mode tends infinitely to zero at 
the metal walls, so lower losses are expected than in a 
metal waveguide structure. The thickness of the PBG-W 
and the channel width were then investigated to study 
optimisation of the structure-particle beam interaction for 
broadband pulse excitation by comparing characteristic 
impedance and accelerating bandwidth. 

Characteristic Impedance 
One of the main figures of merit (FoM) in conventional 

RF accelerators is the shunt impedance . The difficulty 
in applying this to PhCs however is the calculation of the 
wall dissipation that is not trivial. The characteristic im-
pedance  is typically used in the context of dielectric 
laser accelerators [1]. This is defined as the product of the 
accelerating field  and wavelength  with the Poyn-
ting vector along the axis of acceleration in the structure  
via equation 1. 
 =  (1) 

CST Microwave Studio® Eigenmode solver was used to 
investigate the effects of channel size on the metal bound-
ed PBG-W at the point of beam-wave interaction in struc-
tures with a=117 μm, hole radius 0.445a, and pad layer of 
13 μm.  was calculated for PBG-Ws ranging in thick-
ness from 283-425 μm and channel width 266-398 μm. 
The effects of these two parameters on the characteristic 
impedance can be seen in Fig. 2, with the centre point 
taken at the original dimensions chosen. While there exist 
higher interaction points on the map, these are coupled 
with a low group velocity which made those points less 
desirable for THz acceleration due to shorter interaction 
times between the pulse and bunch.  

Dispersion Control 
While  can be calculated from a single eigenmode 

simulation at the point of interaction providing a good 
FoM for comparison, due to the broadband nature of THz 
the efficient design of interaction within the PBG-W re-
quires full spectral pulse-beam analysis. One key property 
to investigate this in the accelerating mode is its disper-
sion as this conveys information on the acceleration 
bandwidth, and the phase/group velocities of the EM 
fields. A comparison of the accelerating mode dispersion 
of the DLW based on [2] with dielectric layers on the top 
and bottom at 10% waveguide thickness per layer and the 

PBG-W with dimensions corresponding to the centre-
point of Fig. 2 is shown in Fig. 3.  

 

 
Figure 2: Variation of characteristic impedance with 
PBG-W thickness and channel width. 

Accelerating Bandwidth 
When the dispersion of a mode is known, the phase-

synchronicity with a particle beam for each frequency is 
also revealed. In a structure of length , a certain number 
of frequencies will propagate with a positive accelerating 
effect. The Fourier analysis of this acceleration can be 
calculated via equation 2.  = exp −  (2) 

Where  is the electric field at each frequency and  is 
the longitudinal wavenumber. In a structure of 5 mm 
length, the Fourier series for the PBG-W was calculated. 

 
Figure 3: Dispersion of accelerating mode for the PBG-
W, the O-PBG-W, and their interaction with the =  
line (SoL). 

 While this information is useful, with the peak showing 
the likely ideal centre frequency for acceleration, it 
doesn’t give a true picture of what a particle will see 
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when being accelerated. Taking the peak as the centre-
frequency and integrating in steps of increasing band-
width around this point gives a plot of the total voltage 
seen by a beam when a pulse of a given bandwidth is 
injected as in equation 3. = −  (3) 

It can be seen from the blue curve in Fig. 5 that although 
the accelerating voltage starts high, it rapidly drops off 
negligible levels by ~13% BW. In broadband pulse driven 
accelerators, this is not ideal behaviour. 

Structure Optimisation for THz Pulses 
It can be seen from Fig. 4 that the PBG-W needs to be 

optimised to better take advantage of the bandwidth of the 
driving pulses which are typically short at this frequency. 
Part of this problem is due to matching a broadband pulse 
with the interaction being near the peak of the dispersion 
curve thus nearly half of the injected pulse will be wasted 
and evanescently decay from the injection site or couple 
to spurious modes. To optimise the structure for this spec-
tral distribution of the driving pulse, the structure was 
redesigned to operate at a lower point on the dispersion 
curve. While a hole radius of 0.35a offers a PBG of 41% 
unlike the 50% PBG available at 0.445a, it still encom-
passed the dispersion of the accelerating mode at the 
frequencies of interest. It has the additional benefit of 
operating in a region with higher group velocity thus 
contributing positively towards the R/Q of the accelerat-
ing structure.  

 

 
Figure 4: Integrated accelerating voltage for PBG-W 
(blue), and O-PBG-W (red), both calculated using =100	 /  across all frequencies. 

An optimal geometry was found by introducing the ad-
ditional parameter of a metal wall dielectric padding layer 
where both the group velocity and interaction yield better 
results than the original structure. The parameters for this 
optimised structure (O-PBG-W) can be seen in Table 1 
with dispersion of the accelerating mode compared to the 
PBG-W and DLW in Fig. 3. Variation of accelerating 
voltage with pulse bandwidth is shown as the red curve in 
Fig. 4; it can be noted that a higher total accelerating 
voltage is realised across the entire bandwidth range. 

Table 1: Parameters and FoMs for Optimised PBG-W 

Parameter Value Unit 
PhC Period (a) 82 μm 
Hole Radius r/a 0.35  
PBG-W Channel Width 401 μm 
PBG-W Thickness 454 μm 
PhC Pad Layer 16 μm 
Wall Pad Layer 23 μm 
Waveguide Length 5.0 mm 
Group Velocity 0.24c  
Phase Velocity 1.00c  
Characteristic Impedance 10.51 MΩ/m 
R/Q 0.11 MΩ/m 

CONCLUSION 
The design of a photonic-crystal based waveguide to 

accelerate highly-relativistic electrons driven by THz 
radiation has been investigated. It was shown that the 
photonic bandgap, accelerating mode dispersion and the 
synchronism point with the beam need to be carefully 
designed to satisfy the requirements in terms of accelerat-
ing bandwidth and characteristic impedance for THz-
driven structures. Optimisation of the proposed PBG-W 
for broad bandwidths has resulted in a 6.5x improvement 
of accelerating voltage at 10 % bandwidth, and nontrivial 
accelerating voltages above 13% bandwidth with further 
optimisation of the structure is expected to improve this 
figure further. Comparison with other accelerating struc-
tures is required to truly quantify the accelerating proper-
ties of PBG-W and will be undertaken during further 
optimisation. 
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