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Abstract
A new Table Positioning Device (TPD) for high preci-
= sion and heavy load manipulations has been developed.
—~ Conceived as an alternative to the precision hexapods, it
= 5 fulfils the gap of sample (and/or, instruments) positioning
in smaller (height) available working spaces of synchro-
¢ tron Diffractometers (Dm). The concept is based on a
fRedundant Parallel Kinematic Structure (Rd-PKS) with
= four (4) legs having 2dof active joints (actuators). In the
2 Proof of Functionality (PoF) step, a stacked solution has
2 been adopted for the actuators’ design using precision XY
% translation Positioning units (Pu). The symmetrically 6-
g 4(PP)PS mechanism — OCTOGLIDE(OG) having eight
£ (8) gliding actuators (P) is implying also a pair of wedg-
g es—Elevation (El) and socket/ball-Guiding (G) Pu, as
2 passive joints (P and S) forming one of the Positioning
E modules (Pm). Spatial positions in the working space can
§ be reached without any singularities and planar motions
= along X or Y axis performed very intuitively with only
f some of the actuators (decoupled) motions. The first tests
< of the prototype are revealing both, high precision geome-
% try of motion (straightness, flatness, etc.) and stiffness
2 capabilities.
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INTRODUCTION

Diffraction using standard or advanced X-ray methods
G-is still the most common techniques to investigate the
S structure of various materials [1]. In the synchrotron case,
< the dedicated machines — Diffractometers (Dm) have been
- built in a large variety to fulfil the specific requirements
%(NEWPORT, HUBER, KOHZU, etc). Sometimes, these
.2 requirements implied the use of special environmental
< conditions’ instruments. They could be sophisticated,
> large in size and heavy; but, must be manipulated with
© high precision (i.g. I07/DLS [2]), too. In order to comply
< with the actual existent space of standard available Dm
f machines, the designers of positioning devices must

© adapt. Till now, the serial stacked solution has been large-
E ly used. Each of the motion axes — X, Y and/or Z (transla-
2 o tion and/or rotations) has been materialized through
: standard independent stages to pose the sample (and,
§ instrument) in the right position. However, in the case of
5 more than 3 dof, the available space cannot be enough for
2 packing all axes, or doing the necessary tasks-especially,
2 variable distance rotations around Dm - Center of Rota-
= tion(CoR) point, which in this case is fixed. Precision
E Hexapods has been foreseen as next solution [3]. By be-
8 ing more compact, they are precise and able to freely
E choose the pivot point (P). However, when the combina-
£ tion of the specifications is including heavy load, and
E appreciable rotation distance (dP), the design of the prod-
. Z ucts could be a challenge [4], especially the height
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(250mm). In order to fulfil the gap, a new product has
been developed. The specificity of its kinematics, design
and performance are now presented.

KINEMATICS

Topology

The new Table Positioning Device (TPD) is based on a
more general parallel kinematic (PK) [5] topology having
four (4) legs. This QUADROPOD (QP) family has a good
natural static stability, being perfect adapted to the com-
mon shape of a working table. With all the actuators at the
base, the 6-4(2)13 structure is a redundant one (Rd=2)
which can be an advantage (power). By choosing DD (or,
in-parallel) actuated joints, the dynamic capabilities will
increase [6], too.

Mechanism

However, the Figure 1 shows a TPD kinematic struc-
ture with 2dof active joints (P;Pj4, i=1...4) stacked on
two levels (i,i+4). In the Prove of Functionality
(PoF) step, the standard (electromechanically) motorized
stages were an easy way of implementation and the motor
/ screw mechanical principle (stability) another one. 6-
4(PP)PS mechanism (6-dof, PPPS-kinematic chains, P-
prismatic/linear and S-spherical joints) can be seen as
composed from two pair of orthogonal arranged kinemat-
ic chains (K;K;;,, i=1,2), each having a pair of active
joints with motion axis perpendicular on each other
(P;iLP;+4) and parallel on the opposed ones(P; || Pin).

C

Figure 1: Mechanism kinematics.

By this symmetric arrangement of the eight (8) planar
sliding/gliding actuators (OCTOGLIDE), together with
the specificity of the passive joints on the next level (P,

Table 1: Basic Motions

Motion Actuation Ki

X Pi(i=2,4)P;;4(i=1,3) 2
Y P(i=1,3)P;+4(i=2,4) 2
Z Pi4(i=1,...,4)* 2

* +£X & +Y sign should apply.
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fixed angle) the mechanism is able to provide a way of
moving the table in one direction with only two (2) cou-
ples of opposed pairs, Table 1. Moreover, for horizontal
motions - X (or, Y), a displacement in the posi-
tive/negative direction implies displacements (4) with
exactly the same values, i.e. X=Xi(i=2,4)=Yi(i=1,3).

Following these (decoupled) motions, the control at: a)
workshop and b) programming sites is becoming more
intuitive (a desire of technicians) and simplified. Note:
For the entire mechanism, two joints — P and S types have
been used, only.

DESIGN
Concept

Based on the above mechanism, in a modular design
concept (specific to PKMs), between a base (B) and table
(T) four Positioning modules Pm have been arranged
around the centre of the base (O); each of them consisting
from a well-defined combination of active and/or passive
Positioning units (Pu), Fig. 2.

Active (Ac) Pu have been chosen as compact transla-
tional XY stages with high accuracy (and, stiffness) based
on screw principle. The first passive Pu is built as Eleva-
tion unit (El) based on inclined plane principle. A pair of
wedges - W1 and W2 is materializing a precise and com-
pact stiff up / down motion.

“1
Pyramid T
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e
| Pm,

Gu

Pm;;,
B Ac

Figure 2: Design concept.

A compact ball & socket design has been chosen for the
Guiding unit (Gu) passive positioning based on sliding
principle. It consists from a vertical pillar with a high
precision ball - B at one end and an adjusted socket - S
house (two parts). Through a combined Pm (Pm;, Pm;.,,
i=1,2) motions (and, constrains), precision and stiff : a)
translations — X,Y,Z and/or b) rotations - Rx, Ry or Rz
can be obtained based on the resulting pyramid principle.

CAD

The above design concept — principle and components
has been implemented in specialized software (ProE) to
produce functional (solid models) and, manufacturing
(drawings) graphical products. The main features of: a)
standard (XY) and b) customized (W, SJ) precision used

Table 2: Device Positioning Module

Pu Principle Type

Ac XY 5102.15

El W1/W2 Z(a=30°)
Gu B&S SSJ(¢20mm)
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components [7] are included in Table 2.

A picture of the 3D solid model representing the prod-
uct (nominal position) with the overall dimensions can be
seen in Fig. 3. Note: The height value h=225(<250mm).

Inclinedguides

Pillars

225
25
E Motors

Figure 3: Device layout.

Workspace

In order to characterize a PKM product, its specific fea-
tures (e.g. workspace) should be determined or, at least
evaluated before the production even started. Generally,
the multi degrees of freedom Workspace (WS) of a PK
device is a complex 6D shape resulting from the total
number of pose (translation & rotations) reached by a
chosen (center of platform) point taken in to account
max/min permitted actuators displacements. The determi-
nation is an issue. A more easy way is to determine a 3D
shape with constant orientation (Rx=Ry=Rz=0). By using
the geometrical features of each guided point intersected
in the table’s center (geometric method), the OG final
rectangular WS shape — double pyramids is coming as an
intersection of four partial prisms (Ws;, i=1,...,4). The
overall dimensions are included in Fig. 4. As expected,
the shape & size are affected by the actuation and eleva-
tion (wedges) maximum strokes. However, there are no
singularities inside. A smaller rectangular (cubic) WS, can
be defined as inscribed (I=9.6mm). Note: With an opti-
mum design, it can be enlarged.

/4—25 —)XM
50

Figure 4: Maximal & inscribed (dashed) workspace.
PROTOTYPE

Zn

Manufacturing

An experimental prototype has been built based on the
drawings of the above design process. It is mainly con-
sisting from two parts: a) Mechanical device (Md) and b)
Controller(C) units. Latter, a PC with the software (graph-
ical interface) has been included. The entire manufactur-
ing process has been based on - standard and specific set
of operations like machining, assembly and control based
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% on the well-established rules and the specific expertise
5 acquired by the company in precision manufacturing.
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ork, publisher,

In order to produce a motion (positioning) with the de-
g sired accuracy, the mechanical (motors), electronic
2 (hardware) and software components must be chosen
% accordingly and work perfectly together. The main com-
2 ponent in the loop (controller) must manage input/output
= = informational flux safely and in time, by being very ro-
z Z bust. For OG a digital controller (SMC9300PP) has been
_c built using BISS interface. The dedicated motion software
w which is using the Invers Positional Problem (IPP) is not
£ taken (yet!) in to account the linear encoders (RESO-
£ LUTE) standard components of each of the actuators. It is
.§ controlling the device in an open loop, only. A simple
2 graphical interface has been implemented including the
% menu for the: a) desired point linear & angular (X,Y,Z,
g Roll, Pitch, Yaw) coordinates, b) Pivot/probe point
;:; (X,Y,Z) coordinates and ¢) maximum translation & rota-
£ tion (Tmax,Rmax) range visual parameters.

N
4
I

In order to fully characterize a positioning product,
some specific features must be experimentally verified
before the small/mass production release. After the OC-
TOGLIDE prototype has been completed (and the motion
control functions integrated) the first investigations start-
ed with a set of measurements consisted in to determine:

Z a) range, b) accuracy and c) stability of functional mo-
2t10ns. The setup shown in Fig. 5 is mainly based on using
& a laser interferometer (RENISHAW) - source, retroreflec-
& tors, etc., stable table (granite) with an additional frame
(Z axis) and PC to record the data.
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Figure 5: Measurements Set-up.

The basic motions range have been proved to be carried
out as expected (designed). The max/min values are the
direct result of the actuation values (XY=+25mm), Table
3.

Table 3: Motion Range

©=2d Content from this work may be used under the terms of the CC BY 3.0 licence (© 2

Parameter Unit Min/Max
XY, Z mm 50, 50, 29
Rx,Ry,Rz ° 11,11, 18
MOPE17
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The measurements to determine the errors (accuracy &
geometrical) in both, horizontal /vertical (X/Z) axis with
out load has been performed; and, in addition, for rota-
tional motions — roll, pitch and yaw have been performed.
The first obtained results proved a good positioning be-
haviour of the device: a) accuracy (+3,1/4pum) / repeata-
bility (1,5/1,6pum), b) geometric / straightness (flatness)
and c) stiffness (0,55Nm/”, m=50 kg, r=145 mm) fea-
tures, Fig. 6 and Table 4.

Stiffness(Nm/")
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Figure 6: Straight-, flat- and stiffness errors (X).

Table 4: Positional Accuracy

Parameter Unit X(Z)
Straightness pm 0,856 (2,61)
Flatness pm 0,704 (1,9)
Stiffness Nm/“ 0,55
CONCLUSION

A high precision and heavy load, compact Table Posi-
tioning Device (TPD) called OCTOGLIDE, to be used
with standard diffractometers in synchrotron X-ray ad-
vanced applications has been presented. Built on the De-
sign for Precision (DfP) concept and with specific re-
quirements of using heavy load/size instruments it shows
a good behaviour to be considered as a solution for fur-
ther precise positioning tasks. With minimal design modi-
fications it can be used in other diffraction machines hav-
ing small working spaces, as well.
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