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Abstract
With a Bayesian Gaussian regression approach, a system-

atic method for analyzing a storage ring’s beam position
monitor (BPM) system requirements has been developed.
The ultimate performance of a ring-based accelerator, based
on brightness or luminosity, is determined not only by global
parameters, but also by local beam properties at some par-
ticular points of interest (POI). BPMs used for monitoring
the beam properties, however, cannot be located at these
points. Therefore, the underlying and fundamental purpose
of a BPM system is to predict whether the beam properties at
POIs reach their desired values. The prediction process can
be viewed as a regression problem with BPM readings as
the training data, but containing random noise. A Bayesian
Gaussian regression approach can determine the probabil-
ity distribution of the predictive errors, which can be used
to conversely analyze the BPM system requirements. This
approach is demonstrated by using turn-by-turn data to re-
construct a linear optics model, and predict the brightness
degradation for a ring-based light source. The quality of
BPMs was found to be more important than their quantity
in mitigating predictive errors.

INTRODUCTION
The ultimate performance of a ring-based accelerator is

determined not only by certain critical global parameters,
such as beam emittance, but also by local properties of the
beam at particular points of interest (POI). The capability of
diagnosing and controlling local beam parameters at POIs,
such as beam size and divergence, is crucial for a machine to
achieve its design performance. Examples of POIs in a ded-
icated synchrotron light source ring include the undulator
locations, from where high brightness X-rays are generated.
In a collider, POIs are reserved for detectors in which the
beam-beam luminosity is observed. However, beam diag-
nostics elements, such as beam position monitors (BPM) are
generally placed outside of the POIs as the POIs are already
occupied.

Using observational data at BPMs to indirectly predict
the beam properties at POIs can be viewed as a regression
problem and can be treated as a supervised learning pro-
cess: BPM readings at given locations are used as a training
dataset. Then a ring optics model with a set of quadrupole ex-
citations as its arguments is selected as the hypothesis. From
the dataset, an optics model needs to be generalized first.
Based on the model, the unknown beam properties at POIs

∗ yli@bnl.gov

can be predicted. However, there exists some systematic er-
ror and random uncertainty in the BPMs’ readings, and the
quantity of BPMs is limited. Therefore, the parameters in
the reconstructed optics model have inherent uncertainties,
as do the final beam property predictions at the POIs. The
precision and accuracy of the predictions at the POIs depend
on the quantity of BPMs, their physical distribution pattern
around the ring, and their calibration, resolution, etc. When
a BPM system is designed for a storage ring, however, it is
more important to consider the inverse problem: i.e. How
are the BPM system technical requirements determined in
order to observe whether the ring achieves its desired perfor-
mance? In ref. [1] and this paper, we developed an approach
to address this question with Bayesian Gaussian regression.

In statistics, a Bayesian Gaussian regression [2, 3] is a
Bayesian approach to multivariate regression, i.e. regres-
sion where the predicted outcome is a vector of correlated
random variables rather than a single scalar random variable.
Every finite collection of the data has a normal distribution.
The distribution of generalized arguments of the hypothe-
sis is the joint distribution of all those random variables.
Based on the hypothesis, a prediction can be made for any
unknown dataset within a continuous domain. In our case,
multiple BPMs’ readings are normally distributed around
their real values. The standard deviations of the Gaussian
distributions are BPM’s resolutions. A vector composed of
quadrupoles’ mis-settings is the argument to be generalized.
The prediction at the POIs is the function of this vector. The
continuous domain is the longitudinal coordinate s along a
storage ring.

BRIGHTNESS PERFORMANCE
AND BEAM DIAGNOSTICS

Consider a dedicated light source ring. Its ultimate per-
formance is measured by the brightness of the X-rays gen-
erated by undulators. The brightness is determined by the
transverse size of both the electron and photon beam and
their angular divergence at their source points [4–7]. There-
fore, the undulator brightness performance B depends on
the ring’s global emittance and the local transverse optics
parameters,

B ∝
1
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Here ϵx,y are the electron beam emittances, which represent
the equilibrium between the quantum excitation and the
radiation damping around the whole ring. β, γ are the Twiss
parameters [8], η,η′ are the dispersion and its derivative at
the undulators’ locations, σδ is the electron beam energy
spread σph =

√
λLu

2π and σ′
ph
= 1

2

√
λ
Lu

are the X-ray beam
diffraction “waist size” and its natural angular divergence,
respectively. The X-ray wavelength λ, is determined based
on the requirements of the beam-line experiments, and Lu is
the undulator periodic length. The emittance was found to
be nearly constant with small β-beat. Therefore, monitoring
and controlling the local POI’s Twiss parameters is crucial.

The final goal of beam diagnostics is to provide sufficient,
accurate observations to reconstruct an online accelerator
model. Modern BPM electronics can provide the beam turn-
by-turn (TbT) data, which is widely used for the beam optics
characterization and the model reconstruction. Based on
the model, we can predict the beam properties not only at
the locations of monitors themselves, but more importantly
at the POIs. The capability of indirect prediction of the
Twiss parameters at POIs eventually defines the BPM system
requirements on TbT data acquisition. Based on Eq. (1),
how precisely one can predict the bias and the uncertainty
of Twiss parameters β and η at locations of undulators is
the key problem in designing a BPM system. Therefore, to
specify the technical requirements of a BPM system, the
following questions need to be addressed: in order to make
an accurate and precise prediction of beam properties at
POIs, how many BPMs are needed? How should the BPMs
be allocated throughout the accelerator ring, and how precise
should the BPM TbT reading be?

GAUSSIAN REGRESSION FOR MODEL
RECONSTRUCTION AND PREDICTION
When circulating beam in a storage ring is disturbed, a

BPM system can provide its TbT data at multiple longitudi-
nal locations. TbT data of the BPMs can be represented as
an optics model plus some random reading errors,

x(s)i = A(i)
√
β(s) cos [i · 2πν + ϕ(s)] + ε(s)i, (2)

here i is the index of turns, A(i) is a variable dependent on
turn number, β(s) is the envelope function of Twiss param-
eters at s location, ν is the betatron tune, ϕ is the betatron
phase, and ε(s)i is the BPM reading noise [9–11], which
generally has a normal distribution. Based on the accelerator
optics model defined in Eq. (2), we can extract a set of optics
Twiss parameters at all BPM locations [12–15]. Recently,
Ref. [16] proposed using a Bayesian approach to infer the
mean (aka expectation) and uncertainty of Twiss parameters
at BPMs simultaneously. The mean values of β represent
the most likely optics pattern. The random BPM reading
error and the simplification of the optics model can result in
some uncertainties, εβ , in the inference process,

β = β(s,K ) + εβ(s), (3)

here K is a vector composed of all normalized quadrupole
focusing strengths, and εβ is the inference uncertainty. Un-
less otherwise stated, bold symbols, such as “X”, are used
to denote vectors and matrices throughout this paper. In
accelerator physics, the deviation from the design model β0
is often referred to as the β-beat. From the point of view
of model reconstruction, the β-beat is due to quadrupole
excitation errors and can be determined by

∆β = β(s,K0 + ∆K ) − β0(s,K0) ≈ M∆K, (4)

where K0 represents the quadrupoles’ nominal setting and β0
is the nominal envelope function along s. M is the response
matrix composed of elements Mi, j =

∂βsi

∂K j
observed by the

BPMs. The dependency of β on K is not linear in a complete
optics model. However, when quadrupole errors are small
enough, the dependence can be approximated as a linear
relation which significantly simplify our problem.

Given a set of measured optics parameters βs at multiple
locations s from BPM TbT data, the posterior probability
of the quadrupole error distribution p(∆K |β) can be given
according to Bayes theorem [17],

p(∆K |β) =
p(β |∆K )p(∆K )

p(β)
∝ p(β |∆K )p(∆K ). (5)

Here p(β |∆K ) is referred to as the likelihood function, which
corresponds to the linear response matrix normalized by
measurement resolution. The prior quadrupole excitation
error distribution p(∆K ) can be determined by comparing
them against the design optics model,

p(∆K ) = N(∆K |0, σ2
∆K )

=
1

√
2πσ∆K

exp

[
−
∆K2

2σ2
∆K

]
, (6)

with,
σ∆K ∼ κ |∆β | = κ | β̄ − β0 |. (7)

Here “∼” describes a statistically proportional relationship
between β-beats (in the unit of “m”) and quadrupole strength
error ∆K (in units of m−2). The coefficient κ can be com-
puted based on the optics model either analytically or nu-
merically before carrying out any measurements.

To predict the uncertainty at POIs, the output of all pos-
sible posterior quadrupole error distributions must be aver-
aged,

p(∆β∗ |s∗,∆β, s) =

∫
p(∆β∗ |s∗,∆K )p(∆K |∆β, s)dK

= N(m∗,Σ
2
∗). (8)

Here ∆β∗ is the predicted result at POIs’ locations s∗ given
the measured ∆β at s. The mean values and the variances
of the predicted distributions at POIs are

m∗ = σ−2
β M∗A

−1MT
∆β̄

Σ2
∗ = M∗A

−1MT
∗ , (9)
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M∗ is the Jacobian matrix of the optics response to
quadrupole errors observed at POIs. The difference between
the mean value mx and the real β at a POI is referred to as
the predicted bias. By substituting the bias and uncertainty
back into Eq. (1), we can estimate how accurate the bright-
ness could be measured for given BPMs’ resolutions. Based
on the desired brightness resolution, we can determine the
needed quantity and resolution of BPMs.

APPLICATION TO NSLS-II RING
We use the NSLS-II ring and its BPM system TbT data

acquisition functionality to demonstrate this approach. The
NSLS-II undulator (POIs) are located at non-dispersive
straights. Typical photon energy from undulators is around
10 keV . The undulators’ period length is 20 mm. The hori-
zontal beam emittance is 0.9 nm ·rad including the contribu-
tion from 3 damping wigglers. The emittance coupling ratio
can be controlled to less than 1%. At its 15 short straight
centers, the Twiss parameters are designed to be as low as
βx,y = 1.80, 1.20 m, and αx,y = 0 to generate the desired
high brightness x-ray beam from the undulators.

The horizontal emittance growth with an optics distortion
was found to be small. Degradation of an undulatorís bright-
ness is mainly determined by its local optics distortion which
can be evaluated with Eq. (1). Multi-pairs of simulated β−α
were incorporated into the previously specified undulator
parameters to observe the dependence of the X-ray bright-
ness on the β-beat. A change of approximately 1% of the
βx,y in the transverse plane can degrade the brightness by
about 1%. Because multiple undulators are installed around
the ring, the predicted performance needs to be evaluated at
all POIs simultaneously.

First we studied the dependence of predictive errors on
the quantity of BPMs. A comprehensive simulation was set
up to compare the Gaussian regression predictive errors with
the real errors. A linear optics simulation code was used to
simulate the distorted optics due to a set of quadrupole errors.
The β-beats observed at the BPMs were marked as the “real”
values. On top of the real values, 0.5% random errors were
added to simulate one-time measurement uncertainty seen
by the BPMs. A posterior distribution of the quadrupole
errors was obtained by reconstructing the optics model with
the likelihood function, and the prior distribution (6) and
(7). The predicted optics parameters with their uncertainties
were then calculated based on another likelihood function
between quadrupoles and the locations of undulators with
Eq. (8).

Next, we studied the effect of β measurement resolution
on the predictive errors. A similar analysis was carried out
but with different β-resolution as illustrated in Fig. 1. By
observing Fig. 1, several conclusions can be drawn: (1) The
degradation of the β resolution reduced the accuracy of the
generalized optics model. However, this can be improved by
applying a more complicated optics model [16]. Thus, the
BPM TbT resolution is the final limit on the resolution of
β parameters. In order to accurately and precisely predict

the beam properties at POIs, improving the resolution of
BPMs is crucial. (2) After a certain point, the predicted
performance is not improved significantly with the quantity
of BPMs as seen in Fig. 1. The advantage of reduction of
predictive errors will gradually level out once enough BPMs
are used. Meaning that quantitatively, the improvement in
error reduction will eventually become negligible compared
to the cost of adding more BPMs. The higher the resolu-
tion each individual BPM has, the less number of BPMs
are needed. There should be a compromise between the re-
quired quality and quantity of BPMs to achieve an expected
predictive accuracy. (3) The quality (resolution) is much
more important than the quantity of BPMs from the point
of view of optics characterization. For example, at NSLS-II,
in order to resolve 1% brightness degradation, at least 120
BPMs with a β resolution better than 1% are needed, or 90
BPMs with a 0.75% resolution, etc. Having more BPMs
than is needed creates no obvious, significant improvement.
Having 60 high precision (0.5% β-resolution) BPMs yields
a better performance than having 180 low precision (1%)
BPMs in this example.

Figure 1: Predictive β-beat errors (including bias and un-
certainties) at the locations of undulator (POIs). βs are
observed with different number of BPMs and different reso-
lutions. The resolution of β is the final limit on predictive
errors. The higher the resolution each individual BPM has,
the less number of BPMs are needed.
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