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Abstract
Free electron lasers (FEL) and plasma wakefield acceler-

ators (PWA) are planning to create more and more compli-
cated electron bunch configurations, including multi-color
modes for FELs such as LCLS and LCLS-II and custom
tailored bunch current profiles for PWAs such as FACET-II.
These accelerators are also producing shorter and higher in-
tensity bunches than before and require an ability to quickly
switch between many different users with various phase
space requirements, exotic setups require lengthy tuning.
We present adaptive machine learning and model indepen-
dent feedback techniques and their application in both the
LCLS and European XFEL to control electron bunch longi-
tudinal phase space (LPS) to create desired current profiles
and energy spreads by tuning FEL components automati-
cally, maximize the average pulse output energy of FELs by
automatically tuning over 100 components simultaneously,
and create non-invasive LPS diagnostics at PWAs.

AUTOMATIC ACCELERATOR TUNING
Precise control of bunch lengths, current profiles, and en-

ergy spreads of increasingly shorter electron beams at fem-
tosecond resolution is extremely important for all advanced
particle accelerators, including free electron lasers (FEL).
FEL X-ray bursts with tunable wavelength are generated by
tuning the energies of extremely short electron bunches (∼fs).
Two of the most advanced FELs are the Linac Coherent Light
Source (LCLS) and the European XFEL (EuXFEL). The
LCLS provides users with photon energies of 0.27 keV to
12 keV based on electron bunches with energies of 2.5 GeV
to 17 GeV with electron bunch charges ranging from 20 pC
to 300 pC and the bunch duration from 3 fs to 500 fs [1–3].
The EuXFEL, utilizes electron bunches with energies of up
to 17.5 GeV, with charges ranging from 0.02 to 1 nC per
bunch, and photon energies of 0.26 keV up to 25 keV [4].
Both the LCLS and the EuXFEL face challenges in quickly
tuning between different beam types and achieving precise
control for desired current and energy profiles and complex
experiments such as two color mode and self seeding [5–8]

Extremum Seeking
The tuning algorithm that we utilized is based on a model-

independent adaptive extremum seeking (ES) feedback ap-
proach developed for the stabilization of unknown, nonlinear,
unstable dynamic systems. The main strengths of the method
are that it works based on noisy measurements, can handle
nonlinear, time-varying systems, and can tune many param-
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Figure 1: Maximization of nosiy pulse energy measurement
at LCLS using only 2 point moving average.

eters simultaneously. Analytic proofs of convergence for a
wide range of systems can be found in the literature [9–13].

For iterative accelerator tuning applications, we consider
some analytically unknown cost function that we would like
to minimize or maximize base only on noisy measurements,
C(p, t). For this work, C(p, t) is the pulse energy of the light
generated by an FEL and we would like to automatically
maximize this cost function. This cost is a function of accel-
erator parameters p = (p1, . . . , pm), such as magnet power
supply settings which control magnetic field strengths or
RF system phase and amplitude settings, which control the
acceleration of the charged particle beams. Furthermore, all
of these components, the beam itself, and the diagnostics
drift with time due to external influences such as temperature
variation, and therefore there is a time dependence. Also,
we are usually only able to sample a noise-corrupted version
of such a cost, of the form Ĉ(p, t) = C(p, t)+ n(t). Although
the interaction of charged particles with external sources of
electromagnetic fields, including RF cavities, magnets, and
other particles in the bunch, is analytically described via
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Figure 2: Tuning 105 parameters to maximize average bunch
energy based on raw function measurements. The 75 point
moving average is plotted to help visualize energy evolution.

Maxwell’s equations and special relativity, when consider-
ing a realistic electron bunch and its travel down the length
of a particle accelerator, there is no analytic formula relating
all component settings to the light pulse energy.

Tuning of parameters p is based on the dynamics:

dpi
dt
=
√
αωi cos

(
ωit + kĈ(p, t)

)
, (1)

where all of the frequencies are distinct, ωi = ωri , ωrj =
ωj , a good way to choose the dithering frequencies ωj is
to evenly space them in the range [ω,1.75ω], for large ω,
so that no two dithering frequencies are integer multiples
of each other. α is related to the dithering amplitude of
each parameter, upon reaching equilibrium, each parameter
oscillates with an amplitude of

√
α
ω j

about a steady state
value, and k is a gain. Based on [9–13], one can prove that
on average, for large ωi , the dynamics of (1) are

dpi
dt
= −

kα
2
∂C(p, t)
∂pi

, (2)

a gradient descent of the analytically unknown function C,
despite only seeing its noisy measurement Ĉ.

For digital iterative parameter updates, a finite difference
approximation of the derivative in (1) is utilized:

pi(n + 1) = pi(n) + ∆t
√
αωi cos

(
ωin∆t + kĈ(n)

)
, (3)

where ∆t is chosen such that ∆t < 2π
5 maxωi

≪ 1, so that the
finite difference approximation of the derivative holds.

In practice, the iterative scheme is applied as follows: 1).
Initial parameter settings, p(1), are chosen and applied to the
accelerator. 2). Wait for accelerator components to settle to
their new set points, after some waiting time, Tw , which may
be 1 second for mechanical phase shifters and 0.1 seconds for
digital RF set-points. 3). Once the accelerator parameters
have settled to prescribed settings, record the cost function,
Ĉ(1). 4). Calculate new parameter settings, p(2), based on
p(1) and C(1), as prescribed by (3), and continue iteratively.

The physical parameter update period, Tw , and the digital
algorithm’s numerical time step, ∆t , are two completely
independent quantities. In the digital algorithm, ∆t is chosen
to be arbitrarily small, based on dithering frequency choices,
as described above. The update time, Tw , is the physical
time between parameter updates and is chosen based on how
fast accelerator parameters can be adjusted.

The ES scheme has been applied at FACET to create a
non-invasive longitudinal phase space diagnostic, by adap-
tively tuning a model to match a non-destructive energy
spread spectrum. Once this match was accomplished, the
model’s accurately predicted and tracked the longitudinal
phase space (LPS) of the electron beam [13]. Further work
in this direction is ongoing for even more accurate LPS
predictions at FACET-II. We utilized the ES scheme for au-
tomatically maximizing the average pulse energy of both
the LCLS and the EuXFEL FELs [14]. In Fig. 1 we see the
results of automatic tuning 6 RF parameters at the LCLS
where a simple 2-point average of the noisy pulse energy
measurement was used as our Ĉ(p, t), running at ∼1 Hz, so
that the RF system had time to make prescribed adjustments.
Figure 2 shows the results of applying the same technique at
the EuXFEL with 105 parameters (84 air coils and 21 phase
shifters) and a noisy cost function without averaging. This
was during initial machine setup in which various parts are
incrementally tuned to establish SASE.

Adaptive Machine Learning
Due to a sharp increase in availability of computational

power, as well as the development of new algorithms, ma-
chine learning (ML) and in particular the use of neural net-
works (NN) has become very popular recently [15, 16]. Re-
cently applications of ML to accelerators include parameter
tuning [17], beam diagnostics [18], and LPS predictions [19].
Whereas a model-independent method, such as ES, can han-
dle time-varying systems, it is a local approach and can
possibly get stuck in local minima. Trained NNs can tune
globally, but only for the data sets they were trained on, and
therefore cannot handle time-varying systems. Therefore,
we created an adaptive ML framework in which a trained
NN takes a first global guess and then adaptive feedback is
turned on and zooms in on and track time-varying optimal
parameters. The approach was to train an NN based on a pa-
rameter scan, where for each parameter setting of the LCLS,
we recorded a TCAV image of the LPS, to learn how to map
phase spaces to parameters [20]. In Fig. 3 we demonstrate
the ability of the adaptive machine learning approach. To
achieve a desired phase space, a first guess for machine pa-
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Figure 3: Automatically tuning accelerator parameters to achieve a desired longitudinal phase space in the LCLS.

rameters via a train NN takes place (a), ES is then applied
ES based on real time TCAV measurements where the cost
is the difference between the desired and current 2D phase
space images (b), resulting in convergence (c).

CONCLUSION
We have demonstrated the ability of an adaptive feedback

control method to automatically tune multiple accelerator
components for maximization of average pulse energy at
both the LCLS and the EuXFEL with very noisy signals.
We have also demonstrated an adaptive ML approach for
global tuning for time-varying systems. Future work will
extend these techniques to larger parameter spaces.
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