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Abstract 

Traditionally, accelerator lattices are designed using 

computer codes that solve the equations of motion for 

charged particles in both prescribed and self-consistent 

fields [1, 2]. These codes are run in a mode in which 

particles enter a lattice region and travel through the lat-

tice for a finite distance. Various figures of merit (FoMs) 

are evaluated, and the lattice is then optimized by varying 

the positions and strengths of the focusing elements. [3, 4] 

This optimization is done in a high dimensional parameter 

space, requiring multiple simulations of the particle tra-

jectories.  We propose to alter the design process using 

“adjoint” techniques [5]. Incorporation of an “adjoint” 

calculation of the trajectories and self-fields can, in sever-

al runs, determine the gradient in parameter space of a 

given FoM with respect to all lattice parameters. It in-

cludes naturally self-fields and can be embedded in exist-

ing codes. The theoretical basis for the method and an 

application will be presented. 

LATTICE OPTIMIZATION 

Design and optimization of accelerator lattices is car-

ried out using sophisticated numerical models. [3, 4]  The 

current state of the art codes follow a large number of 

simulation particles through the combined magnetic fields 

of the focusing magnets and the electric and magnetic 

self-fields of the charged simulation particles [1,2]. Typi-

cally, particles are followed for a finite distance, their 

ending coordinates are recorded, and a figure of merit 

(FoM) quantifying the quality of confinement is assessed. 

To optimize the FoM the strengths and locations of the 

focussing magnets are varied and the gradient of the FoM 

in parameter space is determined.  The parameters are 

then adjusted to increase the FoM and the process is re-

peated.  As there are many parameters describing the 

lattice, direct determination of the gradient of the FoM is 

computationally expensive. We present here an alterna-

tive (adjoint) approach that reduces dramatically the 

number of simulations needed to determine the gradient. 

ADJOINT APPROACH 

The adjoint approach is based on a form of reciprocity 

implicit in Hamilton’s equations and is associated with 

the symmetry of the governing equations under time re-

versal [5].  We describe briefly a paraxial, model system 

here in which charged particles move in a four-

dimensional phase space (
!!
x

⊥
,p

⊥
) in time-independent 

fields with distance along the path acting as time.  After a 

canonical transformation, the motion is governed by 

Hamilton’s equations with axial momentum serving as the 

Hamiltonian, 

dx
⊥

dz
= −

∂P
z

∂p
⊥

,
dp

⊥

dz
=
∂P

z

∂x
⊥

,  (1) 

where 

P
z
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,p

⊥
,z) = P

z0
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eff
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⊥
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z0
−
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2
p
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2

/ P
z0

.  (2)

Here 
!!!
Φ

eff
(x

⊥
,z)=Φ− v

z0
A
z
/c  includes both electrostat-

ic and magnetic contributions and satisfies the Poisson 

equation 
 
−∇

⊥

2Φ
eff
= 4πγ

z0

−2ρ , where
!!!
ρ(x

⊥
,z) is the beam

charge density.  We assume for simplicity that all parti-

cles have the same axial velocity. The portion of the po-

tential due to the focussing magnets is imposed through 

Az as a boundary condition on the solution for the effec-

tive potential. 

Let us assume that we have solved the self - consistent 

nonlinear equations for beam propagation over a distance 

L. This is our reference solution for which we evaluate

the FoM. We now consider two perturbations of this solu-

tion. One perturbation, which we label with a superscript

1, is the true solution to the case in which the effective

potential at the wall is changed by a small amount reflect-

ing a small change in the focusing magnets.  The other

perturbation, which we label with superscript 2, is the

adjoint solution.  The change in symplectic area entering

and leaving the region 0<z<L, for these two perturbations

is then expressed (see Ref. 5),

!!!

I
j

j

∑ δp
j⊥
(1) ⋅δx

j⊥
(2) −δp
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(2) ⋅δx

j⊥
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L

=
qγ
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2
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dldz∫ n ⋅∇

⊥
δφ

eff

(1)( )δφeff(2) − 1↔2( )⎡
⎣

⎤
⎦

.     (3) 

Here Ij is the current associated with particle j, and the 

integral on the right is carried out over the transverse 

boundary where the effective potential is specified.  Rela-

tion (3) can be regarded as an extension of Green’s theo-

rem to include the effect of dynamic charge.   

The approach now is to pick conditions on the adjoint 

solution, with superscript 2, such that Eq. (3) becomes an 

evaluation of the change in the figure of merit associated 

with the true solution, the one with superscript 1.  As an 

example, consider a figure of merit based on the coordi-

nates of the particles at the exit plane, z = L,

F = I
j

f (x
⊥ j

,p
⊥ j

)
z=L

j

∑ The change in this quantity for 

the true solution is given by 

δ F = I
j
δx

⊥ j

(1) ⋅ ∂ f / ∂x
⊥
+δp

⊥ j

(1) ⋅ ∂ f / ∂p
⊥

⎡
⎣

⎤
⎦ z=L

j

∑ .  (4) 
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If we assume there is no perturbation of the true orbit at 

z=0, and we select the final coordinates of the adjoint 

solution to be given by 

δp
⊥ j

(2)
= −ε

1
∂ f / ∂x

⊥ j
, δx

⊥ j

(2)
= −ε

1
∂ f / ∂p

⊥ j
,

then the left-hand side of (3) becomes proportional to the 

change in the FoM.  Here 
!
ε
1

is a small constant selected

to insure that the adjoint solution is a liner perturbation. If 

we then take the adjoint solution to satisfy a Dirichelet 

condition, 
!!
δΦ

eff
=0 on the radial boundary, Eq. (3) be-

comes 

!!!

δF = −
qγ

z0

2

4πε
1

dldz∫ n ⋅∇
⊥
δφ

eff

(2)( )δφeff(1)⎡
⎣

⎤
⎦ . (5) 

Thus, the change in the FoM for an arbitrary change in 

the focussing magnets, as controlled by 
!!
δΦ

eff

(1)
, is found

by projecting onto the normal derivative of the adjoint 

potential.  The adjoint problem only needs to be simulated 

once to determine how the FoM will change for any arbi-

trary change in the focusing magnets.  It does require 

slightly perturbing the particle coordinates at the exit and 

running the simulation backward in z [5]. 

Model Problem 

The above procedure has been applied in a particle 

code to determine the sensitivity of beam properties to 

electrode shape [5].  Here we apply the method to the 

sensitivity of beam properties in an accelerator lattice in a 

simpler system, namely the envelope equations [6].  We 

consider the evolution of the transverse RMS widths a, b 

and associated derivatives pa = da/dz, pb = db/dz.  These 

satisfy Hamilton’s equations 

!!

d

dz
p
(a ,b)
(z)= −

∂H

∂(a,b)
,
d

dz
(a,b)=

∂H

∂(p
a
,p

b
)

,  (6) 

where 

!!

H =
p
a

2
+ p

b

2

2
−
1

2
k
x
a2 +k

y
b2( )−2K ln(a+b)+

ε 2

2

1

a2
+
1

b2
⎛

⎝⎜
⎞

⎠⎟
, 

is the Hamiltoniain, kx(z)=-ky(z) are profiles of quadrupole 

field strength, K is a constant space charge parameter 

(proportional to the beam’s line-charge density) and ε is 

the admittance.  Equation (6) generates the following 

differential equation for the RMS width a(z), 

!!

d
2
a(z)

dz
2

= k
x
a+

2K

a+b
+
ε
2

a
3

, 

and a similar equation for b(z). 

We then imagine, as before, two perturbations to this 

system, a true perturbation with superscript 1 and an ad-

joint perturbation with superscript 2.   Due to the Hamil-

tonian property of the governing system, these lead to a 

relation similar to (3) 

!!

a(2)p
a

(1)
+b(2)p

b

(1) −a(1)p
a

(2) −b(1)p
b

(2){ }
0

L

= dz
0

L

∫ k
x

(1)aa(2) +k
y

(1)bb(2) −(1↔2)( )
(7) 

We have dropped the notationalδ signifying a small per-

turbation.  Equation (7) can be manipulated into the same 

form as Eq. (5) for evaluations of FoMs where the true 

perturbations vanish at z=0. Alternatively, if one consid-

ers solutions to the true problem that are periodic in z with 

period L, then the left hand side of Eq. (7) takes the form 

!!

Δa(2)p
a

(1)
+Δb(2)p

b

(1) −a(1)Δp
a

(2) −b(1)Δp
b

(2){ }

= dz
0

L

∫ k
x

(1)aa(2) +k
y

(1)bb(2) −(1↔2)( )
, (8) 

where the true variables are measured at z = 0 or L, and 

the notation 
!!
Δa

(2)
= a

(2)(L)−a(2)(0) , applies to all the 

adjoint variables.  Again, Eq. (8) can be used to evaluate 

the change in FoMs of the form 
!!
F(a,b,p

a
,p

b
)
z=0

, provid-

ed the appropriate values !!Δa
(2)

, etc. are found.  This can

be done using superpositions of 4 independent adjoint 

solutions. 

Equation (8) also presents the possibility of determining 

the gradient of integrated FoMs of the form 

!!

F = dz f (a(z),b(z),z)
0

L

∫ .  Here the change in F is given by 

!!

δF = dz a(1)
∂ f
∂a

+b(1)
∂ f
∂b

⎛

⎝⎜
⎞

⎠⎟0

L

∫ . (9) 

If we consider periodic adjoint solutions with specified 

added focusing, 

!!
k
x

(2)
=

∂ f

a∂a
, k

y

(2)
=

∂ f

b∂b
, 

then the left side of (8) vanishes, but the added focusing 

appears on the right-hand side giving 

!!

δF = dz
0

L

∫ k
x

(1)aa(2) +k
y

(1)bb(2)( )⎡
⎣

⎤
⎦

. (10) 

Example 

We consider a simple example where the lattice con-

sists essentially of two quadrupole magnets of opposite 

sign equally spaced over a distance of z = 0.08 - 0.40 m. 

The profile of kx(z) = -ky(z) is shown as a black line in Fig. 

1, showing that the period starts and ends in the center of 

one of the magnets. We chose for this example K = 10
-5
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and !ε =7.6×10
−6  m. We adopt for illustration as a figure

of merit 

!!
F =

1

2
p
a

2
+ p

b

2
+λ −2 a2 +b2( )⎡

⎣
⎤
⎦z=L

, (11) 

where λ = 10 m in this example. If F is evaluated where 

both momenta vanish, it corresponds roughly to the cross 

sectional area of the beam. We then consider matched 

solutions of the envelope equations, and ask what is the 

change in F for an arbitrary change in the profile of the 

quadrupole magnetic field.  The change in F is given by, 

!!
δF = p

a
p
a

(1)
+ p

b
p
b

(1)
+λ

−2 aa(1) +bb(1)( )
By inspecting Eq. (8) we see that if we find non-matched, 

perturbed solutions under the same focusing fields,      

!!
k
x

(2)
= −k

y

(2)
=0( ) , and that have as boundary conditions

!!
Δa

(2)
= ε

2
p
a
(L) ,

!!
Δb(2) = ε

2
p
b
(L) ,

!!
Δp

a

(2)
= −ε

2
λ

−2
a(L) , and

!!
Δp

b

(2)
= −ε

2
λ

−2b(L) .  Then Eq. (8) reduces to

!!

δF =
1

ε
2

dz
0

L

∫ k
x

(1)aa(2) +k
y

(1)bb(2)( )⎡
⎣

⎤
⎦

. (12) 

Figure 1: Plots of the profile of the quadrupole focusing 

force (black line) and the sensitivity of the figure of merit 

(11) (blue line) for the example described in the text.

Here the factor 
!
ε
2

cancels in the numerator and denomi-

nator on the right side of (12) and is introduced to signify 

that the variables with superscript 2 are indeed small 

perturbations.  Finding these perturbed solutions involves 

four independent solves of the perturbed envelope equa-

tions and forming a linear superposition of these satisfy-

ing the boundary conditions.  Once this is done (12) al-

lows for a determination of the change in the figure of 

merit for an arbitrary change in the profile and strength of 

the focusing magnets. 

We have carried out the above procedure for the exam-

ple under consideration and the result, in the form of the 

profile of 
!!
a(z)a(2)(z)−b(z)b(2)(z)⎡
⎣

⎤
⎦/ε2  appears in Fig. 

1. The validity of this approach has been verified via

comparison with direct calculation of the change in the

figure of merit when the strength of the central quadru-

pole is increased by a small amount (0.1%; a value select-

ed to be in the range of linear variations).  The agreement

between the two methods for calculating the change in F

was within 0.2%.

CONCLUSION 

Adjoint methods have the potential to greatly speed up 

calculations of the sensitivity of various Figures of Merit 

to changes in the profiles describing the focussing lattice 

in accelerators. Such methods can be applied to both 

moment and particle descriptions of the accelerated beam.  

ACKNOWLEDGMENTS 

We acknowledge the support of DoE under grant 

DESC0010301 

REFERENCES 

, 

013109, arXiv:1807.07898, Jan 2019.

[6] M. Reiser, Theory and Design of Charged Particle Beams;

2nd Edition, Wiley – VCH Verlag, 2008.

[1] A. Friedman, R. H. Cohen, D. P. Grote, S. M. Lund, W. M. 
Sharp, J.-L. Vay, I. Haber, and R. A. Kishek, “Computa-

tional methods in the warp code framework for kinetic 
simulations of particle beams and plasmas”, IEEE Trans. 
Plasma Sci. , vol. 42, no. 5, pp. 1321-1334, part 1,  May 
2014.

[2] C. Nieter and J. R.Cary, “VORPAL: a versatile plasma 
simulation code”, Journal of Computational Physics, vol. 
196, issue 2, no. 20, pp. 448-473, May 2004. 
https://doi.org/10.1016/j.jcp.2003.11.0 
04

[3] A. Edelen, N. Neveu, A. Adelmann, Y. Huber, “Surrogate 
modelling for charged particle accelerator beam dynamics”, 
presented at Proc. ICAP2018, Key West, FL, paper SUPAF12 
unpublished.

[4] N. Neveu, L. Spentzouris, A. Adelmann, Y. Ineichen, A. 
Kolano, C. Metzger-Kraus, C. Bekas, A. Curioni, P. Ar-

benz, “A parallel general purpose multi-objective optimiza-

tion framework, with applications to electron beam dynam-

ics”, arxiv:1302.2889, 2013.

[5] T. Antonsen, D. Chernin, J. Petillo, “Adjoint Approach to 
Beam Optics Sensitivity Based on Hamiltonian Particle 
Dynamics,” Physics of Plasmas,  vol. 26, no. 1, article no.

 .

North American Particle Acc. Conf. NAPAC2019, Lansing, MI, USA JACoW Publishing
ISBN: 978-3-95450-223-3 ISSN: 2673-7000 doi:10.18429/JACoW-NAPAC2019-TUPLM03

TUPLM03
378

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I

05: Beam Dynamics and EM Fields


