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Abstract
We present a dispersion relation that gives the complex

growth rate for coupled-bunch instabilities at arbitrary chro-
maticity in terms of its value at zero chromaticity. We com-
pare predictions of the theory to elegant tracking simulations,
and show that there are two distinct regimes to stability de-
pending upon whether the zero chromaticity growth rate is
smaller or larger than the chromatic tune shift over the bunch.
We derive an approximate expression that is easily solved
numerically, and furthermore indicate how the formalism
can be extended to describe arbitrary longitudinal potentials.

INTRODUCTION
The standard theory of coupled-bunch instabilities ex-

pands the distribution function in orthogonal synchrotron
modes [1–3], which are typically then simplified by assum-
ing that the modes do not couple. However, assuming that
the modes are independent becomes poor at high chromatic-
ity. We present a dispersion relation that is valid at arbitrary
chromaticity and wakefield strength that is relatively easy to
solve.

OUTLINE OF THE DERIVATION
Our theory begins with the single particle dynamics in-

cluding the (linear) transverse betatron motion, the longi-
tudinal focusing, and the chromatic coupling between the
two. Our first step is to choose a new set of coordinates
that approximately eliminates the chromatic coupling; this
coordinate change involves the well-known “head-tail” (or
chromatic) phase [4, 5]

𝜔0𝜉
𝛼𝑐𝑐

𝑧 = 2𝜋𝜉
𝛼𝑐𝑐𝑇0

𝑧 ≡ 𝑘𝜉𝑧, (1)

where 𝜔0 = 2𝜋/𝑇0 is the revolution frequency, 𝜉 is the
chromaticity, and 𝛼𝑐 is the momentum compaction. The
head-tail phase arises because the betatron frequency de-
pends linearly on the energy for 𝜉 ≠ 0, which in turn leads
to the betatron phase accumulating a shift that is proportional
to the longitudinal coordinate 𝑧 as it performs synchrotron
oscillations. Hence, the quantity 𝑘𝜉𝜎𝑧 encapsulates the chro-
matic tune-shift across a bunch of length 𝜎𝑧.

Next, we add the long-range transverse wakefield, whose
effect we will describe using the distribution function of
bunch 𝑗 𝐹𝑗(𝒵; 𝑠), where the phase-space coordinates 𝒵 =
(𝑧, 𝑝𝑧, Ψ, 𝒥), and ∫𝑑𝒵 𝐹𝑗 = 1 for 𝑁𝑏 bunches (i.e., 0 ≤
𝑗 ≤ 𝑁𝑏 − 1). The dipolar wakefield gives a kick to trailing
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particles that is proportional to the displacement of the lead-
ing particle, and the total kick is obtained by summing the
wakefields over all bunches in the ring and over all previous
turns. Defining the equilibrium centroid spacing between
bunch 𝑛 and 𝑗 to be 𝐿𝑛,𝑗 with 𝐿𝑛,𝑗 > 0 if 𝑗 > 𝑛 and 𝐿𝑛,𝑗 = −𝐿𝑛,𝑗
if 𝑗 ≤ 𝑛, the potential due to the dipole wakefield is

𝒱𝐷 = 𝑦
𝑁𝑏−1
∑
𝑗=0

𝑒2𝑁𝑗
𝛾𝑚𝑐𝑇0

∞
∑
ℓ=0

∫𝑑𝒵′ 𝑦′𝐹𝑗(𝒵′; 𝑠 − ℓ𝑐𝑇0)

× 𝑊𝐷[𝑧 − (𝑧′ + ℓ𝑐𝑇0 + 𝐿𝑛,𝑗)].

We expand the long-range wakefield 𝑊𝐷 assuming it varies
slowly over the bunch,

≈ √𝒥 cos(Ψ̄ − 𝑘𝜉𝑧)
𝑁𝑏−1
∑
𝑗=0

2𝑒2𝑁𝑗
𝛾𝑚𝑐𝑇0

×
∞
∑
ℓ=0

𝑊𝛽
𝐷 (−ℓ𝑐𝑇0 − 𝐿𝑛,𝑗) (2)

× ∫𝑑𝒵′ √𝒥′ cos(Ψ̄′ − 𝑘𝜉𝑧′)𝐹𝑗(𝒵′; 𝑠 − ℓ𝑐𝑇0)

= √𝒥 cos(Ψ̄ − 𝑘𝜉𝑧)
𝑁𝑏−1
∑
𝑗=0

𝒲𝑛,𝑗(𝑠), (3)

where 𝒲𝑛,𝑗 is proportional to the kick that particles in bunch
𝑛 receive due to the centroid displacement of bunch 𝑗.

In terms of the transverse and longitudinal actions (𝒥, ℐ)
and their respective angles (Ψ, Φ), the single particle Hamil-
tonian is

ℋ = ℋ𝑧(ℐ) +
𝜔𝛽
𝑐 𝒥

+ √𝒥 cos[Ψ̄ − 𝑘𝜉𝑧(Φ, ℐ)]
𝑁𝑏−1
∑
𝑗=0

𝒲𝑛,𝑗(𝑠),
(4)

where, the dependence on Ψ−𝑘𝜉𝑧 comes from the coordinate
change using Eq. (1), 𝒲𝑛,𝑗 is the dipolar kick defined by
(2)-(3), and ℋ𝑧 and 𝑧(Φ, ℐ) depends on the rf potential.

The Hamiltonian (4) specifies the particle equations of
motion within our model, and to determine multi-bunch
collective stability we will consider the coupled set of Vlasov
equations associated with ℋ. Each bunch satisfies its own
Vlasov equation, and for bunch 𝑛 we have

0 = 𝜕𝐹𝑛
𝜕𝑠 + 𝜔(ℐ)

𝑐
𝜕𝐹𝑛
𝜕Φ +

𝜔𝛽
𝑐

𝜕𝐹𝑛
𝜕Ψ

+
𝑁𝑏−1
∑
𝑗=0

𝒲𝑛,𝑗
cos(Ψ − 𝑘𝜉𝑧)

2√𝒥

𝜕𝐹𝑛
𝜕Ψ

+
𝑁𝑏−1
∑
𝑗=0

𝒲𝑛,𝑗√𝒥 sin(Ψ − 𝑘𝜉𝑧)𝜕𝐹𝑛
𝜕𝒥 ,

(5)
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where we have introduced the amplitude-dependent longitu-
dinal (i.e., synchrotron) frequency 𝜔(ℐ) = 𝜕ℋ𝑧/𝜕ℐ. The
theory is Hamiltonian, and any dissipative effects (e.g., syn-
chrotron emission) can only be approximately included later.

Our next step is to reduce the 𝑁𝑏 −1 Vlasov equations into
a coupled set of linear, ordinary differential equations for
the transverse centroid positions. This process is basically
done in two steps. The first step involves linearizing the
problem about the equilibrium distribution function, multi-
plying by the transverse complex dipole displacement, and
then integrating over the transverse degree of freedom. After
dropping fast oscillating terms and then taking the Fourier
transform, we are left with a coupled set of linear equations
for the dipole-weighted longitudinal distribution function.
The second step involves solving for the dipole-weighted
longitudinal distribution function using the methods in [6,7],
and then integrating over longitudinal phase space to obtain
a set of coupled equations for the transverse dipole moments
in terms of the long-range wakefield and equilibrium quan-
tities. In terms of the (chromatic-shifted) transverse dipole
moment

𝒟𝑛 = 𝑒−𝑖Ω𝑠/𝑐𝑒−𝑖𝜔𝛽𝑠/𝑐 ∫𝑑𝒵 √𝒥𝑒−𝑖Ψ𝑒𝑖𝑘𝜉𝑧 ̃𝑓𝑛(𝒵), (6)

this procedure results in the following equation

𝒟𝑛 = 𝒳(Ω, 𝑘𝜉)
𝑁𝑏−1
∑
𝑗=0

M𝑛,𝑗𝒟𝑗 (7)

where 𝒳(Ω, 𝑘𝜉) depends upon the equilibrium properties
and will be specified shortly, while the coupling matrix M
has components

M𝑛,𝑗 =
𝑒2𝑁𝑒,𝑗

2𝛾𝑚𝑐2𝑇0

∞
∑
ℓ=0

𝑊𝐷(−ℓ𝑐𝑇0 − 𝐿𝑛𝑗)𝑒
𝑖ℓ𝜔𝛽𝑇0. (8)

The matrix M is essentially the same as the theory of Thomp-
son and Ruth [8], and the formula (7) is particularly conve-
nient because it divides into two pieces: one piece that is the
usual matrix theory, and the other which involves the longitu-
dinal distribution function and the chromaticity. The former
can be diagonalized in the usual way, and we will assume
that a matrix U has been found such that UMU−1 = 𝜆I with I
the identity. Then, stability is governed by 1 = 𝜆𝒳(Ω, 𝑘𝜉),
and we find that the two basic parameters of the theory are
the 𝜉 = 0 growth rate 𝜆 (encapsulating the strength of the
wakefield), and the head tail frequency 𝑘𝜉 (summarizing
chromatic effects).

Now, we just need the expression for 𝒳. We will do this
in terms of dimensionless quantities, and therefore define

�̂� = 𝜆
𝛼𝑐𝜎𝛿/𝜎𝑡

, Ω̂ = Ω
𝛼𝑐𝜎𝛿/𝜎𝑡

, (9)

where 𝜎𝑡 and 𝜎𝛿 are the rms bunch duration and energy
spread, respectively, and 𝛼𝑐𝜎𝛿/𝜎𝑡 is of order the character-
istic synchrotron frequency. If we additionally assume that
we can approximate the longitudinal position by its lowest

order harmonic, 𝑧(Φ, ℐ) ≈ 𝜁(ℐ) cos Φ, then we find that
1 = 𝜆𝒳(Ω, 𝑘𝜉) can be written

1 = −𝑖�̂� ∫
∞

0
𝑑ℐ 2𝜋 ̄𝑓 (ℐ)

�̂�(ℐ)[1 − 𝑒2𝜋𝑖Ω̂/�̂�(ℐ)]

× ∫
2𝜋

0
𝑑𝜃 𝐽0[2𝑘𝜉𝜁(ℐ) sin(𝜃/2)]𝑒𝑖Ω̂𝜃/�̂�(ℐ),

(10)

where the scaled frequency �̂� = 𝜔(ℐ)/(𝛼𝑐𝜎𝛿/𝜎𝑡) and equi-
librium ̄𝑓 (ℐ). We will assume that the equilibrium is an
exponential function of the energy, ̄𝑓 ∝ 𝑒−ℋ/𝛼𝑐𝜎2

𝛿.

HARMONIC RF POTENTIAL
In this section we will assume that the longitudinal poten-

tial is given by the harmonic approximation of a single rf
system, for which the Hamiltonian ℋ𝑧 = 𝜔𝑠ℐ/𝑐 with the
synchrotron frequency 𝜔𝑠 = 𝛼𝑐𝜎𝛿/𝜎𝑡. In this case we also
have

̄𝑓 (ℐ) = 𝑒−ℐ/𝜎𝛿𝜎𝑧

2𝜋𝜎𝛿𝜎𝑧
, �̂� = 1, 𝜁(ℐ) = 𝜎𝑧√

2ℐ
𝜎𝛿𝜎𝑧

. (11)

Then, we can integrate over action in (10) to get

1 = −𝑖�̂�
1 − 𝑒2𝜋𝑖Ω̂

∫
2𝜋

0
𝑑𝜃 𝑒−𝑘2

𝜉𝜎2
𝑧 (1−cos 𝜃)𝑒𝑖Ω̂𝜃. (12)

This is related to the single-bunch result derived in [7],
but is significantly simpler due to our Taylor series expan-
sion of the long-range wakefield. Coupled-bunch stability
can be found for a given long-range wakefield eigenvalue
𝜆 and chromaticity 𝑘𝜉 = 𝜉𝜔0/𝛼𝑐𝑐 by solving (12) for Ω.
In the limit that the chromaticity vanishes we have 𝑘𝜉 = 0
and the integration can be easily done to find that Ω = 𝜆.
This result actually follows from the general Eq. (10), so
that in the zero chromaticity limit stability is independent
of the longitudinal potential, assuming that the long-range
wakefield varies slowly over the bunch length. This is to
be expected, since when 𝜉 = 0 the transverse motion is
uncoupled from the synchrotron motion. On the other hand,
at non-zero chromaticity the transverse betatron frequency
depends upon the particle energy and therefore on its longitu-
dinal position in the bunch, so that the collective oscillation
is more complicated when 𝜉 ≠ 0.

When the instability is weak, ℑ(Ω̂) ≪ 𝜔𝑠, we can derive
the following approximate form

Ω̂ ≈ �̂�
√2𝜋𝑘𝜉𝜎𝑧

⎡⎢
⎣
1 + 𝑚

𝑘2
𝜉𝜎2

𝑧
(�̂� − 𝑚

2 )⎤⎥
⎦

(13)

for integer 𝑚. Equation (13) predicts that the coupled-bunch
growth rate is reduced from its 𝜉 = 0 value by an amount
proportional to the chromatic phase over the bunch, and for
small �̂� the reduction is by a factor √2𝜋𝑘𝜉𝜎𝑧. Addition-
ally, the instability depends upon 𝑚: for sufficiently small
coupled-bunch eigenvalue �̂� the mode with 𝑚 = 0 has the
largest imaginary part, but a larger �̂� can lead to modes with
higher 𝑚 being dominant.
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Table 1: Parameters Used in elegant Simulations

Parameter Symbol Value
Vertical tune 𝜈𝑦 36.1
Chromaticity 𝜉𝑦 0 to 5.5
Momentum compaction 𝛼𝑐 4.04 × 10−5

Bunch length 𝜎𝑧 16.06 mm
Energy spread 𝜎𝛿 0.135%
Synchrotron frequency 𝜔𝑠/2𝜋 160 Hz
Chromatic phase 𝑘𝜉𝜎𝑧 0 to 12.5
Number of bunches 𝑁𝑏 48
Total current 𝐼tot 200 mA
Vertical damping time 𝜏𝑦 15.4 ms
Coupled-bunch eigenvalue 𝜆 ℑ(𝜆)(𝑖 − 0.6)

On the other hand, when the instability growth rate be-
comes of order the synchrotron frequency, ℑ(Ω̂) > 1 one
can show that

1 = −𝑖�̂�
𝑘𝜉𝜎𝑧

√𝜋
2 𝑒−Ω̂2/2𝑘2

𝜉𝜎2
𝑧 erfc⎛⎜⎜

⎝

−𝑖Ω̂
√2𝑘𝜉𝜎𝑧

⎞⎟⎟
⎠

. (14)

If |ℜ(𝜆)| ≤ ℑ(𝜆) as is typical, we find that Eq. (14) predicts
that ℑ(Ω̂) = 0 when the instability strength �̂� ≈ (0.74 ±
0.06)𝑘𝜉𝜎𝑧. Increasing ℑ(�̂�) beyond this range results in a
similar (or larger) increase in the coupled-bunch instability
growth rate, and the reduced slope given by (13) no longer
applies. Hence, we find that the chromaticity is only effective
in controlling the instability provided that

ℑ(𝜆) <
3𝑘𝜉𝜎𝑧

4
𝛼𝑐𝜎𝛿

𝜎𝑡
= 3

4𝜉𝜔0𝜎𝛿. (15)

Hence, the coupled-bunch growth rate is reduced according
to Eq. (13) if the spread in the betatron frequency due to
chromatic effects 𝜉𝜔0𝜎𝛿 is much larger than the 𝜉 = 0
growth rate 𝜆, while if ℑ(𝜆) > 𝜉𝜔0𝜎𝛿 Eq. (15) applies and
ℑ(Ω) becomes significantly larger than that implied by (13).

We plot solutions to Eq. (12) when ℜ(𝜆) = ℑ(𝜆) in
Fig. 1(a). When 𝜉 ≠ 0 two specific regimes can be identified:
the first applies when ℑ(�̂�) < 3𝑘𝜉𝜎𝑧/4, and displays an
instability growth rate ℑ(Ω̂) that increases with ℑ(�̂�) at a
rate inversely proportional to 𝑘𝜉𝜎𝑧; the second regime takes
over when ℑ(�̂�) > 3𝑘𝜉𝜎𝑧/4, and predicts that the slope of
the growth rate with ℑ(�̂�) is greater than (but comparable
to) that for 𝜉 = 0.

We also compare solutions of (12) to those obtained from
elegant tracking [9] in Fig. 1(b). For this comparison we
use lattice parameters relevant to the APS-U storage ring that
are listed in Table 1, and we ignore synchrotron emission. In
particular, note that the strength of the matrix growth rate 𝜆
is varied while maintaining the ratio ℜ(𝜆)/ℑ(𝜆) derived for
the long-range resistive wall wakefield assuming a fractional
tune of 0.1 and the 48 equi-spaced bunch pattern, and the
bunch length was chosen to match the rms 𝜎𝑧 of the double
rf system planned for APS-U.

Figure 1(b) shows that our theory agrees very well with
tracking over the entire range of 𝜆 and 𝜉. In particular, both

Figure 1: (a) Theoretical growth rates (crosses) with the
weak limit Eq. (13) in red and the strong limit Eq. (14) in blue.
(b) Comparison of the growth rates obtained by tracking
(dots) to those of theory (solid lines) when 𝑉𝑧 ∝ 𝑧2 and we
assume no synchrotron damping.

show clear evidence of the weak instability regime for small
𝜆, and the strong regime when Eq. (15) applies.

CONCLUSIONS
We have sketched how to derive the dispersion relation

(12) that relates the complex growth rate Ω of multi-bunch
transverse stability to the 𝜉 = 0 growth rate 𝜆 and the head-
tail (chromatic) phase shift over the bunch 𝑘𝜉𝜎𝑧. The rela-
tion predicts two regimes of the instability depending upon
whether the 𝜉 = 0 growth rate is smaller or larger than the
chromatic tune shift over the bunch, and agrees well with
simulations when synchrotron radiation is ignored. Future
work will explore similar results for a longitudinal potential
that is a quartic function of 𝑧 as might be the case for a dou-
ble rf system, and will also compare theory to simulations
that include synchrotron emission.
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