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Abstract 
Transverse wigglers provide a sinusoidal vertical mag-

netic field along the horizontal direction. This magnetic 
field imparts a sinusoidal modulation on the horizontal 
phase space.  Since sine and cosine functions are the basis 
of periodic function space, the combination of multiple 
wigglers would be able to impart arbitrary correlation on 
the horizontal phase space.  In this paper, we numerically 
demonstrate the application of this new method for arbi-
trary transverse profile shaping. 

INTRODUCTION 
Argonne Wakefield Accelerator (AWA) group demon-

strated arbitrary longitudinal shaping capability of the 
emittance exchange (EEX) beamline in 2016 [1].  Several 
different transverse masks were used to shape the beam 
transversely, and the transmission through the mask was 
around 40%.  The masking is one of the easiest ways to 
control the profile, but this low transmission would make a 
significant drop in the beam quality due to a higher charge 
requirement in the gun, and it can make thermal issues for 
high repetition rate or high intensity beams. 

We recently proposed a scheme to generate a tunable 
bunch train using an EEX beamline with a transverse wig-
gler [2]. This wiggler provides a sinusoidal magnetic field 
which makes a sinusoidal modulation on the transverse 
phase space. If the beam passes the series of transverse 
wigglers with different periods and strengths, one can cor-
relate the particle’s horizontal position and momentum ar-
bitrarily.  This new method can open up a new way to con-
trol all longitudinal properties including arbitrary current 
profile shaping without charge loss. The following sections 
describe the related theoretical background and numerical 
demonstration of the method for shaping application. 

PRINCIPLE OF ARBITRARY SHAPING 
USING TRANSVERSE WIGGLERS 

Profile shaping using wigglers requires two steps. 
Firstly, an appropriate correlation function should be de-
fined to generate a desired profile. This correlation func-
tion can be found from the relationship with beam param-
eters and beamline parameters. 

Particle transport can be described by the matrix formal-
ism. If the particle’s initial coordinate is (𝑥଴, 𝑥଴ᇱ ), its final 
horizontal position can be written as, 𝑥௙ = 𝑅ଵଵ𝑥଴ + 𝑅ଵଶ𝑥଴ᇱ .    (1) 

If one applies arbitrary correlation (f) to the initial horizon-
tal phase space, particle’s momentum term (𝑥଴ᇱ ) should be 
replaced to 𝑥଴,௢௟ௗᇱ + 𝑓(𝑥଴). Here, we ignore the particle’s 
initial momentum to simplify the calculation and only con-
sider newly added arbitrary correlation. 

When the particle’s final coordinate is ൫𝑥௙, 𝑥௙ᇱ ൯ and pro-
files are expressed as N, the initial and final profiles have a 
relationship as below due to the charge conservation. 𝑁௙൫𝑥௙൯d𝑥௙ = 𝑁଴(𝑥଴)d𝑥଴.   (2) 

By substituting the final coordinate (𝑥௙) to Eq. (1), Eq. (2) 
can be rewritten to, 𝑁௙(𝑅ଵଵ𝑥଴ + 𝑅ଵଶ𝑓)ሼ𝑅ଵଵ + 𝑅ଵଶ𝑓ᇱሽ = 𝑁଴(𝑥଴). (3) 

If there is a desired final profile, Eq. (3) shows the required 
correlation function to generate the desired profile in the 
given system (i.e. beam transport and initial profile are 
fixed). 

The next step is to correlate x and x’.  To generate an 
arbitrary correlation, we use the concept of Fourier expan-
sion.  The summation of cosine functions can approximate 
an arbitrary function. Here we use transverse wigglers to 
generate cosine modulation on the horizontal phase space. 

The transverse wiggler provides the alternating magnetic 
field which can be described as, 𝐵௬ ≅ −2𝐵௥ cos ቀଶగఒೢ 𝑥ቁ cosh ቀଶగఒೢ 𝑦ቁ exp ቀ− గఒೢ 𝑔ቁ, (4) 

where 𝐵௥ is the residual induction of the magnet, 𝜆௪ is the 
magnetic period of the wiggler, and 𝑔 is the gap of the wig-
gler. Cosine term in this field provides cosine correlation 
on the horizontal phase space which will be the building 
block for cosine series constructing the correlation func-
tion. 

To determine how many wigglers we need and other 
wiggler parameters such as gap and length, both Fourier 
expansion and genetic algorithm based optimization are 
tried.  

APPLICATION TO ARBITRARY 
PROFILE CONTROL 

In this section, we provide two simple examples of wig-
gler based shaping.  We derived required correlation func-
tions for each example using Eq. (3).  Then, Fourier expan-
sion is applied to the first example to find the wiggler set-
ting while genetic optimization is used for the second ex-
ample.  Particles are generated and correlation is numeri-
cally applied to the distribution.  This correlated particle  ____________________________________________ 
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distribution is linearly transported for 1 m drift to demon-
strate the method. 

Uniform profile from Gaussian profile 
If the desired profile is a uniform profile with the width 

2w. The final profile can be defined as, 

𝑁௙൫𝑥௙൯ = ቊ𝐶    𝑤ℎ𝑒𝑛 ห𝑥௙ห ൑ 𝑤0    𝑤ℎ𝑒𝑛 ห𝑥௙ห ൐ 𝑤.   (5) 

The correlation function to generate this uniform profile 
should satisfy the relationship given in Eq. (3).  This equa-
tion can be rewritten as below using Eq. (5). 𝐶ሼ𝑅ଵଵ + 𝑅ଵଶ𝑓ᇱሽ = 𝑁଴(𝑥଴).   (6) 

If we assume the Gaussian function as the initial profile, 
the correlation function in Eq. (6) becomes, 

𝑓(𝑥଴) = ଵଶ஼ோభమ erf ൬ ௫బఙೣబ൰ − ோభభோభమ 𝑥଴,   (7) 

where erf is the error function and 𝜎௫బ is the initial rms 
beam size.  Fig. 1a shows the shape correlation function 
with 𝑅ଵଵ = 1, 𝑅ଵଶ = 1 m, and 𝜎௫బ = 1 mm. 

Figure 1b shows two horizontal profiles. The blue one is 
the initial Gaussian profile with rms size of 1 mm. This 
profile is evolved to the orange curve after particles with 
the correlation traverse 1 m long drift. The core part of the 
profile shows a flat area as expected, and there are spikes 
near the edge of the profile due to the folding on the phase 
space. This is typical behavior that we can see from the 
Gaussian to uniform profile conversion [3]. 

The correlation function from Eq. (7) works as expected, 
so we need to find a wiggler setting to approximate this 
correlation function.  Fourier transform is applied to this 
correlation function to find Fourier coefficients. Due to the 
symmetric characteristic of the correlation function, only 
cosine coefficients are non-zero.  Here the fundamental pe-
riod is 17.7 mm and we only consider first two modes for 
the shaping. Coefficients for the first and third harmonic 
are -1.12E-3 and 1.04E-3 respectively.  These numbers cor-
respond to the gap of 18.4 mm and 6.3 mm for the 2 mm 
long transverse wigglers with Br of 1 T. 

This small wiggler array provides a correlation function 
close to the ideal correlation function in Fig. 1a.  As a re-
sult, the Gaussian profile changes to the orange curve in 
Fig. 1c.  The core part of the profile shows uniform distri-
bution clearly.  Due to the discrepancy near the edge of the 
correlation function, the spike formation in the horizontal 
profile is different from ones in Fig. 1b. It starts to have 
rising and falling length and the peak of each spike is re-
duced by this lengthening.  

Although we don’t provide related figures in this paper, 
adding more wigglers corresponding to higher harmonics 
makes the profile from the wiggler almost identical to the 
one from the correlation function directly. 

 
Figure 1: Numerical demonstration of the concept. Parti-
cles are generated and numerically tracked. (a) shows the 
correlation function calculated from the Eq. 7. (b) shows 
the initial Gaussian profile (blue) and shaped profile di-
rectly by the correlation function (orange). (c) shows the 
shaped profile from two wigglers (orange). 

Triangle profile from quadratic profile 
The second example is a triangle profile. Here we as-

sume initially quadratic profile to avoid the spike that 
Gaussian profile generates as shown in Fig. 1b. 

A triangle profile can be defined as, 

𝑁௙൫𝑥௙൯ = ൝− ூబଶ௪ ൫𝑥௙ − 𝐶൯ + ூబଶ     𝑤ℎ𝑒𝑛 ห𝑥௙ − 𝐶ห ൑ 𝑤                0                    𝑤ℎ𝑒𝑛 ห𝑥௙ − 𝐶ห ൐ 𝑤.
 (8) 

The relationship for the correlation function in Eq. (3) 
becomes a little bit more complicated as, ቀ− ூబଶ௪ 𝑅ଵଵ𝑥଴ − ூబଶ௪ 𝑅ଵଶ𝑓 + ூబଶ ቁ ሼ𝑅ଵଵ + 𝑅ଵଶ𝑓ᇱሽ = 𝑁଴(𝑥଴),

 (9) 

This ODE has a well-known form to solve. The correlation 
function can be written as, 

𝑓(𝑥଴) = ଵோభమ ൜𝑤 + 𝐶 − 𝑅ଵଵ𝑥଴ − ට2𝑤ଶ − ସ௪ூబ ׬ 𝑁(𝑠)d𝑠 ൠ,
 (10) 

As mentioned earlier, 𝑁(𝑠) will be a quadratic function to 
represent the quadratic profile as shown in Fig. 2b. Then, 
Eq. (10) provides a simple shape given in Fig. 2a. We as-
sumed 2 mm wide quadratic profile with zero offset term 
(i.e. C=0) for the figure. 
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Figure 2: Numerical demonstration of the concept. Parti-
cles are generated and numerically tracked. (a) shows the 
correlation function calculated from the Eq. 10. (b) shows 
the initial quadratic profile (blue) and shaped profile di-
rectly by the correlation function (orange). (c) shows the 
shaped profile from two wigglers (orange). 

As shown in Fig. 2b, the correlation function in Eq. (10) 
successfully converts a quadratic profile to a triangle pro-
file with a hard edge on the one end.  This is a promising 
result to significantly improve the transmission issue that 
masking methods have [1, 4]. This high shaping quality can 
be preserved if the conversion to longitudinal profile by 
EEX beamline is well-controlled [5, 6]. 

For the wiggler setting, we used genetic optimization for 
this case to find related wiggler parameters.  Strength, pe-
riod and phase are the optimization variables, and we used 
two wigglers only. The result is shown in Fig. 2c, and it 
provides a well-shaped triangle profile as the one from the 
correlation function.  If we assume the length of the wig-
glers are 2 mm and Br of 1 T.  The gap for the first and 
second wigglers are 14.1 mm and 6.3 mm.  Periods are 40.0 
mm and 5.6 mm. The phase will be interpreted as horizon-
tal offset of the wiggler position, and they are +9.9 mm and 
-0.2 mm. 

EFFECT FROM ALTERNATING HORI-
ZONTAL MAGNETIC FIELD 

While the wiggler provides a cosine correlation that we 
use for the correlation control, it also generates an alternat-
ing horizontal magnetic field along the horizontal direc-
tion. This field is expressed as, 𝐵௫ ≅ 2𝐵௥ sin ቀଶగఒೢ 𝑥ቁ sinh ቀଶగఒೢ 𝑦ቁ exp ቀ− గఒೢ 𝑔ቁ. (11) 

When the B-field in Eq. (11) exists, this field kicks the 
particle vertically and the direction depends on the parti-
cle’s horizontal position (see Fig. 3). This behavior can sig-
nificantly increase the momentum spread on the vertical 
phase space which means a significant emittance growth. 

However, this field can be suppressed significantly by 
focusing particles tightly in the vertical direction when 

they pass wigglers.  Since the beam requires a vertical fo-
cusing due to the gap of the wiggler, we automatically gain 
this suppression.  Also, the required length for each wiggler 
is only 2 mm, so tight focusing can be easily achieved. 

 
Figure 3: Conceptual figure showing the vertical momen-
tum kick from transverse wigglers. 

While we track the particle for the profile shaping, we 
also tracked the particle’s vertical motion.  The initial ver-
tical beam size is 0.1 mm with a zero slope.  Figure 4 shows 
the vertical phase space after both wigglers and 1 m long 
drift.  Both cases show a few to tens of micro-radian 
changes on the phase space. This is small enough change 
to ignore in terms of emittance (nm scale). 

 
Figure 4: Vertical phase space after wigglers. Particle dis-
tribution started from zero-divergence with a finite size. (a) 
and (b) correspond to uniform and triangle generation 
cases. 

SUMMARY 
We introduced a new method to control the correlation 

between transverse position and momentum coordinates. 
Transverse wigglers are used to introduce sinusoidal corre-
lations on the transverse phase space.  This became a build-
ing block to approximate arbitrary correlation that we need 
for applications. Two shaping examples worked as ex-
pected with only two short wigglers (2 mm long). 
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