
THE LATEST CODE DEVELOPMENT PROGRESS OF JSPEC*
H. Zhang#, S. Benson, Y. Zhang, Y. Roblin
Jefferson Lab, Newport News, VA, USA

Abstract
The JLab Simulation Package on Electron Cooling

(JSPEC) is an open source software developed at
Jefferson Lab for electron cooling and intrabeam
scattering (IBS) simulations. IBS is an important factor
that leads to the growth of the beam emittance and hence
the reduction of the luminosity in a high density ion
collider ring. Electron cooling is an effective measure to
overcome the IBS effect. Although JSPEC is initiated to
fulfil the simulation needs in JLab Electron Ion Collider
project, it can be used as a general design tool for other
accelerators. JSPEC provides various models of the ion
beam and the electron beam. It calculates the expansion
rate and simulates the evolution of the ion beam under the
IBS and/or electron cooling effect. In this report, we will
give a brief introduction of JSPEC and then present the
latest code development progress of JSPEC, including
new models, algorithms, and the user interface.

INTRODUCTION
JLab simulation package for electron cooling (JSPEC)

is an efficient C++ program for intrabeam scattering
(IBS) effect and electron cooling simulations. It is
developed at JLab to fulfil the requirements of JLab
Electron-Ion Collider (JLEIC) [1] cooling scheme and
cooler design. It provides various models and tools for
IBS expansion rate and/or electron cooling rate
calculations and cooling process simulations. JSPEC has
been thoroughly benchmarked with BETCOOL [2]. For a
typical JLEIC IBS and cooling simulation, the two
programs agree and JSPEC has been observed to achieve
a noticeable improvement in efficiency. Now JSPEC is
being actively used in JLEIC design. JSPEC is open
source, with the source code and the documents available
on the github repository [3]. A cloud version has been
developed by Radiasoft in their SIREPO platform [4]. We
have reported the development of JSPEC in the IPAC
conference in Busan, Korea, 2016 [5]. In this report, we
will concentrate on the latest development of JSPEC,
including a turn-by-turn model for IBS and/or cooling
process simulation, a model for user-defined arbitrary
electron beam, and the input file for JSPEC.

TURN-BY-TURN MODEL
JSPEC originally had the RMS dynamic model and the

particle model for IBS and/or electron cooling process
simulation. The RMS dynamic model assumes the ion
beam always maintains the Gaussian distribution so that

the ion beam can be represented by the macroscopic
parameters, i.e. emittance, momentum spread, and bunch
length (for bunched beam). The particle model uses
sample particles to represent the ion beam, hence the
beam does not necessarily maintain the Gaussian
distribution. In each time step, each particle receives a
random phase advance for betatron and synchrotron
oscillations. The turn-by-turn model is a development of
the particle model. Instead of the random phase advance,
the betatron and synchrotron motion is simulated by a
linear one-turn map, which currently is generated from
the tunes, but could be replaced by a high-order transfer
map generated by an accelerator design/simulation
program, e.g. MAD-X [6] and COSY Infinity [7], for
more accurate modeling. The algorithm of the turn-by-
turn model could be descibed as follows: (1) Create
particles w.r.t. the original emittances of the ion beam; (2)
Calculate the friction force on each ion, which leads to a
momentum change (a kick); (3) Calculate the IBS rate
and apply the IBS kick to each ion; (2) Apply the one-turn
map on all particles; (5) Emittances are calculated
statistically from the 6D phase space coordinates of all the
particles; and (6) Repeat from step (2).

Comparing with the other models, the turn-by-turn
model is much slower and may not be suitable as a design
tool for a long cooling process. But it is considered more
fundermental and hence more accurate. It can be used to
benchmark the other models.

We have compared the turn-by-turn model with the
RMS model, trying to figure out what is the proper
particle number and step size for the RMS simulations.
Take a typical JLEIC cooling case, perform the simulation
of a 10-second cooling using the turn-by-turn model with
10,000 or 100,000 particles. Then repeat the same
simulations again using the RMS dynamic model with the
step size of 1 second and 10 seconds. Comparing the
result, we can see the relative error of the emittances for
one time step, listed in Table 1. The accumulated relative
error for one hour can be estimated, which is listed in
Table 2. We can see that more particles with smaller step

Table 1: Relative Error of Emittance in One Step
Step size (s) N=10,000 N=100,000

1 1.54 10 2.42 10
10 3.06 10 1.04 10

Table 2: Relative Error of Emittance in One Hour
Step size (s) N=10,000 N=100,000

1 5.70% 0.88%
10 11.65% 3.81%

* Work supported by the Department of Energy, Laboratory Directed
Research and Development Funding, under Contract No. DE-AC05-
06OR23177.
#hezhang@jlab.org

North American Particle Acc. Conf. NAPAC2019, Lansing, MI, USA JACoW Publishing
ISBN: 978-3-95450-223-3 ISSN: 2673-7000 doi:10.18429/JACoW-NAPAC2019-TUPLO04

01: Circular and Linear Colliders
TUPLO04

539

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I

Figure 1: Compare the results by the turn-by-turn model
and the particle model.

size lead to a smaller error. The accumulated relative error
in one hour is only 0.88% when the particle number is
100,000 and the step size is 1 second, which gives us a
guide on how to select the parameters for the RMS
simulations.

We have also compared the turn-by-turn model with the
particle model, in order to find the proper parameters for
the particle model that can simulates non-Gaussian ion
beam distribution. The distribution of the ion beam may
deviate from the Gaussian distribution under very strong
cooling. We run a turn-by-turn simulation of a proton
beam under strong cooling for 1,000,000 turns and
compare the result with particle model simulation with
different step sizes. The distribution of the proton beam is
originally Gaussian and will changes into bi-Gaussian due
to the strong cooling on the core. We found that when the
step size is 0.01 second, the results of the two models are
almost identical, as shown in Fig. 1. The difference is
minor and acceptable, when the step size is increased to
0.1 second.

USER-DEFINED ARBITRARY
ELECTRON BEAM

JSPEC provides various models for the cooling electron
beam with regular geometries, such as round, elliptic, or
Gaussian DC/bunched beams. JSPEC also allows to use
the user-defined electron beam that has no assumptions
on the shape and charge distribution. The electron bunch
is defined by sample particles with 6D coordinates (x, y, z,
vx, vy, vz) saved in an ascii file or a binary file. (x, y, z)

Figure 2: Tree structure of boxes.

is the position of a sample particle in the lab frame. (vx, vy,
vz) is the velocity of a sample particle in the beam frame.
For the purpose of friction force calculation, one needs to
calculate the electron density and temperature around a
given ion, for which a tree-based algorithm has been
implemented. We first enclose all the electrons inside a
large cubic box, and then divide the box into eight small
boxes of equal size. The process is repeated until the
number of electrons in each box is less than a
predetermined number, S. Thus smaller/larger boxes will
be generated where there is higher/lower electron density.
The relation between the boxes can be represented as a
partial tree if we remove all the empty boxes. A 2D
example is illustrated in Fig. 2, while it is in principle the
same for a 3D case. When an ion is given, we simply need
to locate which box it is in and the local electron density
and temperature will be calculated using the electrons
inside the box. In electron cooling simulations, the
electron beam is often assumed unchanged. In such a
case, the tree of the electrons only needs to be generated
once, which can be reused in the following simulation
steps. The efficiency of this algorithm is
O((Ne+NsNi)lgNe), where Ne is the number of the sample
electrons, Ni the number of the sample ions and Ns the
number of simulation steps. If the change of the electron
beam needs to be considered in each step, one needs to
generate the tree on each time step and the efficiency of
the algorithm will be O(Ns (Ne+Ni)lgNe).

There are parameters affecting the accuracy of the
model: the sample electron number Ne and the maximum
number of sample electrons in a box S. Obviously, a
larger Ne is preferred for better representation of the
electron beam. But the choice of S is a dilemma. If S is
too large, the number of boxes will be too small and the
charge density calculation may not be accurate. But if S is
too small, the number of electrons in a box is even
smaller and the local temperature calculation suffers from
statistical error. In Table 3, we check the effect of the
value of S to the cooling rate calculation. The first row
shows the cooling rate of an ideal Gaussian electron
beam. The following row shows the cooling rate
calculated by the numerical model with 1,000,000 sample
electrons and various S listed in the first column. We can
see that S = 200 gives the best result. It is also good to see
that the result is not very sensitive to the value of S, which
means even if S deviates from the best value a little, the
final result will not be very bad. This shows the
robustness of the model.

Table 3: Cooling Rate (in 10-4s-1) for Various S
s Rx Ry Rz

N/A 1.57 2.04 2.75
50 1.68 2.20 3.07

100 1.60 2.10 2.89
200 1.57 2.04 2.77
300 1.56 2.02 2.75
400 1.55 2.01 2.73

North American Particle Acc. Conf. NAPAC2019, Lansing, MI, USA JACoW Publishing
ISBN: 978-3-95450-223-3 ISSN: 2673-7000 doi:10.18429/JACoW-NAPAC2019-TUPLO04

TUPLO04
540

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I

01: Circular and Linear Colliders

JSPEC INPUT FILE
JSPEC takes one input file in the plain text format. An

example is shown in Fig. 3. The input file is composed
with sections that fall into three categories: scratch
section (inside the blue block in Fig. 3), definition section
(red block) and operation section (green block). The
scratch section is the only section that allows the user to
define some variables and do some simple calculations
with the variables. Those variables are accessible in the
following section. As shown in Fig. 3, two variables
“emit_nx” and “emit_ny” are defined in the scratch
section, and then they are used to define the normalized
emittance of the ion beam in “section_ion”. As the name
suggests, the scratch section works as your scratch paper.
One can have multipole scratch sections in one input file
and one can put them anywhere as one likes. The
definition category includes all the sections that are used
to define the machine, the beams, and the
calculation/simulation environments. In Fig. 3,
“section_ion”, “section_ring”, and “section_ibs” are
definition sections and they define the ion beam, the ring,
and the IBS calculation environment respectively. In each
line inside a definition section, the left size to the “=” is a
keyword and the right size is the respective value, which
should be a number, a variable defined in a previous
scratch section, or an expression that can be calculated by
the math parser. Although the elements are defined here,
they are not created until the corresponding commands
are called in the operation section. The operation section
is the place to call the operational commands, which can
create the accelerator elements, create the beams, carry
out the expansion rate calculation or the cooling/IBS
dynamic simulation, and/or print out the results to the
screen. As seen in Fig. 3, three commands are called

Figure 3: Sample of JSPEC input file.

in “section_run”. The first one creates the ion beam; the
second one creates the collider ring; and the third one
calculates the IBS expansion rates.

Run JSPEC in the command line followed by the input
file name, the input file will be processed line by line.
Anything that follows a “#” is considered as a comment
and ignored by the program. Spaces and tabs at the both
ends of a line are ignored. Empty lines are ignored, too.
There are no requirements on indents. The indents in the
example of Fig. 3 are added simply to make it easier to
read.

A list of all the sections and the keywords for each
section including the meaning and the proper value of the
keywords are available in the manual, which is hosted in
the github repository [3].

SUMMARY
JSPEC is a program that calculates the instant

expansion rate and simulates the evolution of the ion
beam under the IBS effect and the electron cooling effect.
It is developed at JLab and is being actively used in
JLEIC design. A bunch of ion beam models and electron
beam models are provided. In this report, we presented
the latest updates of JSPEC: a turn-by-turn model for
IBS/cooling dynamic simulation, a tree-based model for
user-defined electron beam, and the text-based input file.
JSEPC is open-source. The source code and the
documentation of JSPEC are published on its github
repository [3].

ACKNOWLEDGEMENT
This material is based upon work supported by the U.S.

Department of Energy, Office of Science, Office of
Nuclear Physics under contract DE-AC05-06OR23177.

REFERENCES
[1] S. Abeyratne et al., “MEIC Design Summary”,

arXiv:1504.07961, (2015).
[2] I. Meshkov et al., “BETACOOL Physics Guide”, (2007);

http://betacool.jinr.ru
[3] https://github.com/zhanghe9704/electroncooling
[4] http://radiasoft.net
[5] H. Zhang, J. Chen, R. Li, Y. Zhang, H. Huang, and L. Luo,

“Development of the Electron Cooling Simulation Program
for JLEIC”, in Proc. IPAC'16, Busan, Korea, May 2016, pp.
2451-2453. doi:10.18429/JACoW-IPAC2016-WEPMW014

[6] F. Schmidt and H. Grote, “MAD-X -- An Upgrade from
MAD8”, in Proc. PAC'03, Portland, OR, USA, May 2003,
paper FPAG014, pp. 3497-3499.

[7] K. Makino, M. Berz, “COSY Infinity Version 9”, NIM A, p.
346, (2006).

North American Particle Acc. Conf. NAPAC2019, Lansing, MI, USA JACoW Publishing
ISBN: 978-3-95450-223-3 ISSN: 2673-7000 doi:10.18429/JACoW-NAPAC2019-TUPLO04

01: Circular and Linear Colliders
TUPLO04

541

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I

