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Abstract 
The JLab Simulation Package on Electron Cooling 

(JSPEC) is an open source software developed at 
Jefferson Lab for electron cooling and intrabeam 
scattering (IBS) simulations. IBS is an important factor 
that leads to the growth of the beam emittance and hence 
the reduction of the luminosity in a high density ion 
collider ring. Electron cooling is an effective measure to 
overcome the IBS effect. Although JSPEC is initiated to 
fulfil the simulation needs in JLab Electron Ion Collider 
project, it can be used as a general design tool for other 
accelerators.  JSPEC provides various models of the ion 
beam and the electron beam. It calculates the expansion 
rate and simulates the evolution of the ion beam under the 
IBS and/or electron cooling effect.  In this report, we will 
give a brief introduction of JSPEC and then present the 
latest code development progress of JSPEC, including 
new models, algorithms, and the user interface.  

INTRODUCTION 
JLab simulation package for electron cooling (JSPEC) 

is an efficient C++ program for intrabeam scattering 
(IBS) effect and electron cooling simulations. It is 
developed at JLab to fulfil the requirements of JLab 
Electron-Ion Collider (JLEIC) [1] cooling scheme and 
cooler design. It provides various models and tools for 
IBS expansion rate and/or electron cooling rate 
calculations and cooling process simulations. JSPEC has 
been thoroughly benchmarked with BETCOOL [2]. For a 
typical JLEIC IBS and cooling simulation, the two 
programs agree and JSPEC has been observed to achieve 
a noticeable improvement in efficiency. Now JSPEC is 
being actively used in JLEIC design. JSPEC is open 
source, with the source code and the documents available 
on the github repository [3]. A cloud version has been 
developed by Radiasoft in their SIREPO platform [4]. We 
have reported the development of JSPEC in the IPAC 
conference in Busan, Korea, 2016 [5]. In this report, we 
will concentrate on the latest development of JSPEC, 
including a turn-by-turn model for IBS and/or cooling 
process simulation, a model for user-defined arbitrary 
electron beam, and the input file for JSPEC. 

TURN-BY-TURN MODEL 
JSPEC originally had the RMS dynamic model and the 

particle model for IBS and/or electron cooling process 
simulation. The RMS dynamic model assumes the ion 
beam always maintains the Gaussian distribution so that 

the ion beam can be represented by the macroscopic 
parameters, i.e. emittance, momentum spread, and bunch 
length (for bunched beam). The particle model uses 
sample particles to represent the ion beam, hence the 
beam does not necessarily maintain the Gaussian 
distribution. In each time step, each particle receives a 
random phase advance for betatron and synchrotron 
oscillations. The turn-by-turn model is a development of 
the particle model. Instead of the random phase advance, 
the betatron and synchrotron motion is simulated by a 
linear one-turn map, which currently is generated from 
the tunes, but could be replaced by a high-order transfer 
map generated by an accelerator design/simulation 
program, e.g. MAD-X [6] and COSY Infinity [7], for 
more accurate modeling. The algorithm of the turn-by-
turn model could be descibed as follows: (1) Create 
particles w.r.t. the original emittances of the ion beam; (2) 
Calculate the friction force on each ion, which leads to a 
momentum change (a kick); (3) Calculate the IBS rate 
and apply the IBS kick to each ion; (2) Apply the one-turn 
map on all particles; (5) Emittances are calculated 
statistically from the 6D phase space coordinates of all the 
particles; and (6) Repeat from step (2).  

Comparing with the other models, the turn-by-turn 
model is much slower and may not be suitable as a design 
tool for a long cooling process. But it is considered more 
fundermental and hence more accurate. It can be used to 
benchmark the other models.  

We have compared the turn-by-turn model with the 
RMS model, trying to figure out what is the proper 
particle number and step size for the RMS simulations. 
Take a typical JLEIC cooling case, perform the simulation 
of a 10-second cooling using the turn-by-turn model with 
10,000 or 100,000 particles. Then repeat the same 
simulations again using the RMS dynamic model with the 
step size of 1 second and 10 seconds. Comparing the 
result, we can see the relative error of the emittances for 
one time step, listed in Table 1. The accumulated relative 
error for one hour can be estimated, which is listed in 
Table 2.  We can see that more particles with smaller step 

Table 1: Relative Error of Emittance in One Step 
Step size (s)  N=10,000 N=100,000 

1 1.54 10  2.42 10  
10 3.06 10  1.04 10  

Table 2: Relative Error of Emittance in One Hour 
Step size (s)  N=10,000 N=100,000 

1 5.70% 0.88% 
10 11.65% 3.81% 

 ___________________________________________  
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Figure 1: Compare the results by the turn-by-turn model 
and the particle model.  

size lead to a smaller error. The accumulated relative error 
in one hour is only 0.88% when the particle number is 
100,000 and the step size is 1 second, which gives us a 
guide on how to select the parameters for the RMS 
simulations.  

We have also compared the turn-by-turn model with the 
particle model, in order to find the proper parameters for 
the particle model that can simulates non-Gaussian ion 
beam distribution. The distribution of the ion beam may 
deviate from the Gaussian distribution under very strong 
cooling. We run a turn-by-turn simulation of a proton 
beam under strong cooling for 1,000,000 turns and 
compare the result with particle model simulation with 
different step sizes. The distribution of the proton beam is 
originally Gaussian and will changes into bi-Gaussian due 
to the strong cooling on the core. We found that when the 
step size is 0.01 second, the results of the two models are 
almost identical, as shown in Fig. 1. The difference is 
minor and acceptable, when the step size is increased to 
0.1 second.  

USER-DEFINED ARBITRARY 
ELECTRON BEAM 

JSPEC provides various models for the cooling electron 
beam with regular geometries, such as round, elliptic, or 
Gaussian DC/bunched beams. JSPEC also allows to use 
the user-defined electron beam that has no assumptions 
on the shape and charge distribution. The electron bunch 
is defined by sample particles with 6D coordinates (x, y, z, 
vx, vy, vz) saved in an ascii file or a binary file. (x, y, z)  

 
Figure 2: Tree structure of boxes. 

is the position of a sample particle in the lab frame. (vx, vy, 
vz) is the velocity of a sample particle in the beam frame. 
For the purpose of friction force calculation, one needs to 
calculate the electron density and temperature around a 
given ion, for which a tree-based algorithm has been 
implemented. We first enclose all the electrons inside a 
large cubic box, and then divide the box into eight small 
boxes of equal size. The process is repeated until the 
number of electrons in each box is less than a 
predetermined number, S. Thus smaller/larger boxes will 
be generated where there is higher/lower electron density. 
The relation between the boxes can be represented as a 
partial tree if we remove all the empty boxes. A 2D 
example is illustrated in Fig. 2, while it is in principle the 
same for a 3D case. When an ion is given, we simply need 
to locate which box it is in and the local electron density 
and temperature will be calculated using the electrons 
inside the box. In electron cooling simulations, the 
electron beam is often assumed unchanged. In such a 
case, the tree of the electrons only needs to be generated 
once, which can be reused in the following simulation 
steps. The efficiency of this algorithm is 
O((Ne+NsNi)lgNe), where Ne is the number of the sample 
electrons, Ni the number of the sample ions and Ns the 
number of simulation steps. If the change of the electron 
beam needs to be considered in each step, one needs to 
generate the tree on each time step and the efficiency of 
the algorithm will be O(Ns (Ne+Ni)lgNe). 

There are parameters affecting the accuracy of the 
model: the sample electron number Ne and the maximum 
number of sample electrons in a box S. Obviously, a 
larger Ne is preferred for better representation of the 
electron beam. But the choice of S is a dilemma. If S is 
too large, the number of boxes will be too small and the 
charge density calculation may not be accurate. But if S is 
too small, the number of electrons in a box is even 
smaller and the local temperature calculation suffers from 
statistical error. In Table 3, we check the effect of the 
value of S to the cooling rate calculation. The first row 
shows the cooling rate of an ideal Gaussian electron 
beam. The following row shows the cooling rate 
calculated by the numerical model with 1,000,000 sample 
electrons and various S listed in the first column. We can 
see that S = 200 gives the best result. It is also good to see 
that the result is not very sensitive to the value of S, which 
means even if S deviates from the best value a little, the 
final result will not be very bad. This shows the 
robustness of the model.  

Table 3: Cooling Rate (in 10-4s-1) for Various S 
s Rx  Ry Rz 

N/A 1.57 2.04 2.75 
50 1.68 2.20 3.07 

100 1.60 2.10 2.89 
200 1.57 2.04 2.77 
300 1.56 2.02 2.75 
400 1.55 2.01 2.73 
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JSPEC INPUT FILE 
JSPEC takes one input file in the plain text format. An 

example is shown in Fig. 3. The input file is composed 
with sections that fall into three categories: scratch 
section (inside the blue block in Fig. 3), definition section 
(red block) and operation section (green block). The 
scratch section is the only section that allows the user to 
define some variables and do some simple calculations 
with the variables. Those variables are accessible in the 
following section. As shown in Fig. 3, two variables 
“emit_nx” and “emit_ny” are defined in the scratch 
section, and then they are used to define the normalized 
emittance of the ion beam in “section_ion”. As the name 
suggests, the scratch section works as your scratch paper. 
One can have multipole scratch sections in one input file 
and one can put them anywhere as one likes. The 
definition category includes all the sections that are used 
to define the machine, the beams, and the 
calculation/simulation environments. In Fig. 3, 
“section_ion”, “section_ring”, and “section_ibs” are 
definition sections and they define the ion beam, the ring, 
and the IBS calculation environment respectively. In each 
line inside a definition section, the left size to the “=” is a 
keyword and the right size is the respective value, which 
should be a number, a variable defined in a previous 
scratch section, or an expression that can be calculated by 
the math parser. Although the elements are defined here, 
they are not created until the corresponding commands 
are called in the operation section. The operation section 
is the place to call the operational commands, which can 
create the accelerator elements, create the beams, carry 
out the expansion rate calculation or the cooling/IBS 
dynamic simulation, and/or print out the results to the 
screen. As seen in Fig. 3, three commands are called  

 

 
Figure 3: Sample of JSPEC input file. 

in “section_run”. The first one creates the ion beam; the 
second one creates the collider ring; and the third one 
calculates the IBS expansion rates.    

Run JSPEC in the command line followed by the input 
file name, the input file will be processed line by line. 
Anything that follows a “#” is considered as a comment 
and ignored by the program. Spaces and tabs at the both 
ends of a line are ignored. Empty lines are ignored, too. 
There are no requirements on indents. The indents in the 
example of Fig. 3 are added simply to make it easier to 
read.  

A list of all the sections and the keywords for each 
section including the meaning and the proper value of the 
keywords are available in the manual, which is hosted in 
the github repository [3].  

SUMMARY 
JSPEC is a program that calculates the instant 

expansion rate and simulates the evolution of the ion 
beam under the IBS effect and the electron cooling effect. 
It is developed at JLab and is being actively used in 
JLEIC design. A bunch of ion beam models and electron 
beam models are provided. In this report, we presented 
the latest updates of JSPEC: a turn-by-turn model for 
IBS/cooling dynamic simulation, a tree-based model for 
user-defined electron beam, and the text-based input file. 
JSEPC is open-source. The source code and the 
documentation of JSPEC are published on its github 
repository [3].  
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