
HELICAL TRANSMISSION LINE TEST STAND FOR 
NON-RELATIVISTIC BPM CALIBRATION ∗

C. Richard†, Michigan State University, East Lansing, USA
S. Lidia, Facility for Rare Isotope Beams, East Lansing, USA

Abstract

Measurements of non-relativistic beams by coupling to

the fields are affected by the properties of the non-relativistic

fields. The authors propose calibrating for these effects with

a test stand using a helical line which can propagate pulses

at low velocities. Presented are simulations of a helical

transmission line for such a test stand which propagates

pulses at 0.033c. A description of the helix geometry used

to reduce dispersion is given as well as the geometry of the

input network.

INTRODUCTION

Measurements of beam properties using devices that cou-

ples to the fields generated by the beam, such as beam posi-

tion monitors, are made easier if the beam is assumed to be

relativistic. For slow beams, such as in the front end of heavy

ion accelerators, the measured fields will be traveling non-

relativistically, v < 0.1c, causing the measured results will

be distorted. The measurements can be corrected using ana-

lytic solutions of the fields [1] and simulations [2]. However,

the authors are unaware of any test stand used to calibrate

beam-line devices for non-relativistic perturbations.

A test stand for this purpose will be strung through the

device under test to replicate the structure and velocity of

the bunch. Such test stands have been created using Goubau

lines to replicate the fields from electron beams [3]. How-

ever, Goubau lines cannot propagate pulses slow enough to

simulate non-relativistic beams. The authors propose using

a helical transmission line. These lines can theoretically

propagate pulses at arbitrarily low phase velocities based on

the pitch of the helix [4]. In order to use helical transmis-

sion lines in a test stand, the impedance and dispersion must

be characterized to ensure reasonable matching and pulse

propagation.

DISPERSION

In order to produce the specific pulse shape at the device

under test, it is ideal to have a constant phase velocity so any

pulse input into the transmission line will maintain the pulse

shape throughout propagation. To calculate the phase veloc-

ity of a helical transmission line, the sheath helix model was

used. This model approximates the helix as a thin cylinder

where the current is forced to travel in a helical path along

the surface with pitch angle, ψ. The boundary conditions at
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Figure 1: Top: phase velocities with varying separation (s).

All other dimensions are given in Table. 1. Bottom: the

corresponding pulse deformation of a 1 ns rms pulse after

propagating 0.5 m.

the sheath helix in polar coordinates are [4]

E i
z = Ee

z (1)

E i
θ
= Ee

θ
(2)

E i,e
z = −E

i,e
θ

cot(ψ) (3)

Hi
z + Hi

θ
cot(ψ) = He

z + He
θ

cot(ψ). (4)

where the superscripts i and e denote the interior and exterior

regions of the helix. This model of the helical transmission

line uses a sheath helix centered inside a conducting pipe.

From these boundary conditions it was found the dispersion

from a helix has large variation with frequency causing the

pulse shape to deteriorate. For example, a 5 mm radius helix

with ψ = 0.05 rad will have the phase velocity reduced from

0.085c to 0.05c over 0.25 GHz. While the input pulse can

be tailored to evolve under dispersion to the correct profile

at the device under test [5], the generation of such pulses is

complicated.

A more practical solution is to add a conducting rod in-

side of the helix to increase the capacitance of the system.

Increasing the capacitance lowers the phase velocity at low

frequency while leaving the high frequency limit unchanged
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Figure 2: Phase velocity variations with different dielectric

constants.

Table 1: Helix Parameters

Pipe radius 20.65 mm

Inner conductor radius 4.5 mm

Helix radius 5 mm

Separation, s 0.5 mm

Pitch angle 0.05 rad

Dielectric constant 3.5

Helix wire width 1 mm

Helix wire thickeness 0.1 mm

phase velocity 0.033c

(Fig. 1 top). The low frequency limit linearly increases with

separation s between the helix and inner conductor. Decreas-

ing the separation maintains the same high frequency limit,

vp = c · sin(ψ), but causes it to converge more slowly. The

slow convergence results in less variation in vp and so a nar-

row separation should be used when constructing a helical

transmission line to limit the deformation of pulses (Fig. 1

bottom).

The helix must be supported by a dielectric layer around

the inner conductor. In the limiting case with the dielec-

tric constant εr = 1 between the inner conductor and the

helix, the high frequency limit of the phase velocity is

vp = c · sin(ψ). As the dielectric constant increases this

drops approximately as ε
−1/3
r for a fixed geometry while the

low frequency limit drops as ε
−1/2
r (Fig. 2). By using the

correct dielectric constant, it is possible to align the high and

low frequency limits. While this is an optimal solution, the

reduced slope from using a small enough s makes it possible

to propagate with little deformation for any εr .

Simulations

The phase velocity was measured with time domain sim-

ulations performed in CST Microwave Studio [6] for the

geometry given in Table 1 (Fig. 3). The simulations were

performed up to 2 GHz to excite lowest mode which does

not have a cut off frequency. The next highest mode of a

5 mm sheath helix has a cut off frequency of ∼ 10 GHz and

will not be excited [5].

A Gaussian pulse was input into the system and the radial

electric field at the wall was measured using probes along

the transmission line. The signals from each probe were

transformed into the frequency domain to find the phase as

a function of frequency. The phase difference between two

probes was used to calculate phase velocity at frequency f

vp( f ) =
L f

(φ2 − φ1)
(5)

where L is the separation between the probes and φi is the

phase at the ith probe.

With a simulation up to 1 GHz, the measured phase ve-

locity agrees with the sheath helix model within 3% up to

0.75 GHz. Above this the signal becomes dominated by

noise and the phase velocity diverges (Fig. 4).

IMPEDANCE

Once the dispersion relation is found, a complete descrip-

tion of the fields is known and the impedance can be calcu-

lated. For the three conductor geometry described above,

two separate impedances can be defined: between the inner

conductor and the helix, and between the helix and pipe. In

general, these are similar except at low frequencies (Fig. 5).

To avoid reflections due to changes to the impedance

caused by variations in construction, geometry parameters

were varied in the analytic model to determine to which

ones the system is most sensitive. As with dispersion, it

is best to minimize the separation between the helix and

the inner radius to reduce the impedance variations with

frequency. More importantly, the separation between the

helix and inner conductor must be constant along the trans-

mission line to limit large variations in the impedance for

even small changes (Fig. 5). For example, a 5% change in

the separation can cause more than a 40% change in the low

frequency limit of the impedance (Fig. 6). However, the

radius of the inner conductor can vary as long as the helix

radius also changes to keep the separation the same. Other

geometry factors, such as the pitch and outer pipe radius,

have a minimal impact on the impedance compared to the

separation (Fig. 6).

Simulations

The signal is coupled to the helical transmission line using

a discrete port on a microstrip line with the bottom plate

connected to the inner conductor and the upper strip con-

nects to the helix (Fig. 3). The outer pipe is isolated at the

input side. The microstrip impedance was set to the low

frequency limit of the helical line impedance. The same

microstrip is used at the end of the helix with an additional

resistor connecting the helix and the pipe to match external

fields at the output. Simulations were performed for the ge-

ometry in Table 1. Due to the relatively constant impedance

up to 2 GHz a more complicated matching geometry was

unnecessary. S1,1 was less than -30 dB at low frequency and

below -15 dB up to 2 GHz.

The impedance of the helical line was measured using

S1,1. However, with the matching geometry described above,
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Figure 3: Example helix with microstrip matching on both ends.

Figure 4: Comparison of phase velocity from simulation

and analytic model using the parameters in Table 1. The

probes are separated by 123 mm.

Figure 5: Impedance variations for different separation (s)

by changing the inner conductor radius. Solid lines represent

the inner impedance and dashed line the outer impedance.

Figure 6: variation of inner impedance by changing the

parameters in Table 1.

Figure 7: Comparison of the impedance from analytic model

and simulation. The spike at 1 GHz is a resonance of the

system length.

resonances were seen at frequencies where the length of the

system was a harmonic of half wavelengths making it diffi-

cult to accurately measure the impedance. The resonances

were damped out by changing the microstrip impedance to

105 Ω so as to be unequal to the helix impedance, 64.5Ω,

and matching with a resistive L-network. With this network

the helix impedance is given by:

Zhelix =

(
R−1
sh +

[
Z0

1 − S1,1

1 + S11

+ R

]−1
)−1

(6)

where Z0 is the impedance of the microstrip, R is the series

resistance, and Rsh is the shunt resistance.

The real part of the impedance from simulations agrees

with the analytic model within 3% up to 2 GHz (Fig. 7). The

simulation also showed a small reactance that was <15% of

the real impedance. This was not predicted by the analytic

model using the sheath helix and it is believed is caused

by the simultion using a finite width wire for the helix and

not a sheath helix. While it is possible to design a reactive

matching network to improve the match, current models do

not account for the reactance. The mismatch using only the

microstip is deemed small enough for current studies.

SUMMARY

The sheath helix approximation was used to study the

impedance and phase velocity of helical pulse line. The

results were compared to a computational model with good

agreement up to 2 GHz. Variations in the phase velocity

were reduced by adding a conducting rod inside the he-

lix. The conducting rod also reduced the variations in the

impedance allowing for matching using only a microstrip.

North American Particle Acc. Conf. NAPAC2019, Lansing, MI, USA JACoW Publishing
ISBN: 978-3-95450-223-3 ISSN: 2673-7000 doi:10.18429/JACoW-NAPAC2019-TUPLS07

06: Beam Instrumentation, Controls, Feedback and Operational Aspects
TUPLS07

465

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I



REFERENCES

[1] R. Shafer, "Beam position monitor sensitivity for low-

βbeams," in Proc. LINAC’94, Tsukuba, Japan, Aug, 1994,

pp. 905-907.

[2] O. Yairet. al., "FRIB beam position monitor pick-up design," in

Proc. IBIC’17, Monterey, CA, USA, Sep, 2014, paper TUP16,

pp. 355-360.

[3] F. Stulle, J. Bergoz, J. Musson, “Goubau line beam instru-

mentation testing, the benefits”, in Proc. IPAC’14, Desden,

Germany, July, 2014, paper THPME096, pp. 3462-3464

[4] S. Sensiper, "Electromagnetic wave propagation on helicalcon-

ductors," Ph.D. thesis, MIT, 1954.

[5] C. Richard and S. Lidia, “Simulating non-relativistic beams

using helical pulse lines”, in Proc. IPAC’18, Vancouver, BC,

Canada, April 2018, paper WEPAL049, pp. 2288-2290.

[6] CST Studio Suite, https://www.cst.com

North American Particle Acc. Conf. NAPAC2019, Lansing, MI, USA JACoW Publishing
ISBN: 978-3-95450-223-3 ISSN: 2673-7000 doi:10.18429/JACoW-NAPAC2019-TUPLS07

TUPLS07
466

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I

06: Beam Instrumentation, Controls, Feedback and Operational Aspects


