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Abstract 
Accelerator operation history data are used to train neu-

ral networks in an attempt to understand the underlying 
causes of performance drifts. In the study, injection effi-
ciency of SPEAR3 [1] over two runs is modelled with a 
neural network (NN) to map the relationship of the injec-
tion efficiency with the injected beam trajectory and envi-
ronment variables. The NN model can accurately predict 
the injection performance for the test data. With the model, 
we discovered that an environment parameter, the ground 
temperature, has a big impact to the injection performance. 
The ideal trajectory as a function of the ground temperature 
can be extracted from the model. The method has the po-
tential for even larger scale application for the discovery of 
deep connections between machine performance and envi-
ronment parameters.  

INTRODUCTION 
SPEAR3 is a 3rd generation storage ring based light 

source. It operates in the top-off mode with frequent fills at 
the 5-minute interval, keeping the stored beam current 
within 1.2% percent from 500 mA. It’s very import to keep 
a high injection efficiency in order to minimize the disturb-
ance to the storage beam and the radiation due to the lost 
beam. Injection efficiency is sensitive to many parameters 
that affect the injected beam and the storage ring. For 
SPEAR3, the injected beam is mostly stable as it comes 
from a 3 GeV Booster, which shields upstream jitters. The 
injection performance is mainly determined by the 
Booster-to-SPEAR (BTS) transport line and the storage 
ring due to mis-steering of the injected beam, optics match-
ing at septum, dynamic aperture and physical aperture in 
the ring, longitudinal phase space, and so on.  

The BTS trajectory is controlled by a feedback that cor-
rect the trajectory every 5 minutes during operation. While 
the trajectory is kept stable, the injection efficiency still 
varies over time as shown in Fig. 1. During a run, the target 
trajectory needs to be updated in accelerator physics shifts 
from time to time.  

To understand the cause of the injection performance 
variation, we are motivated to exam the operation history 
data. A fully-connected NN model was built to successfully 
extract the complex dependence of injection efficiency 
with steering as well as the environment variables.  

DATA PREPARATION 
We investigated operation history data of SPEAR3, 

which include injection efficiency, BPM readings, and 
steering magnet currents in BTS, insertion device gaps, and 
ambient air and ground temperatures. These parameters are 
archived at the different time intervals and there were oc-
casionally missing data points. Therefore, some efforts 
were necessary to clean up the data and align the data 
points.  

 Data from three recent runs were used in the analysis, 
including the 2017, 2018 runs and a fraction of the 2019 
run. There are about 60,000 data points in each full run and 
about 10,000 data points from the 2019 run. 

Injection Efficiency 
There are three injection efficiency measurements, dif-

fering in the monitor used to measure the average intensity 
of the injected beam (see Fig. 1). Among them, the Booster 
Q-meter based data are the least noisy and were thus used 
as the target of NN model. There are still some unrealistic 
data points due to diagnostic issues. To ensure only valid 
data enter the analysis, we filtered out data points with in-
jection efficiency above 200%, below 50%, or periodic 
large fluctuation (~20%) in 5 minutes interval. About 3% 
of all data sets were removed from the study. 

BTS Trajectory  
The beam trajectory has very large shifts between differ-

ent runs, with some BPM readings change by more than 10 
mm, as shown in Fig. 2. Accordingly, the downstream 
steering magnets had to be tuned to compensate. The verti-
cal orbit at two BPMs and the currents on two vertical steer-
ing magnets are shown in Fig. 2 as examples.   

Environment Parameters 
Two of the SPEAR3 insertions devices (ID) can have 

particularly large effect on the injection efficiency, includ-
ing the BL5.elliptical polarized unduator (EPU) and BL15 
ID, an in-vacuum undulator (IVU). The EPU is a major 
source of perturbation to the dynamic aperture. The IVU 
gap changes the physical aperture and could affect the in-
jection beam loss. The gap changes of two devices for the 
three runs are shown in Fig. 3. The EPU phase is also in-
cluded in the analysis. 
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Figure 1: The history data of BTS to SPEAR3 injection efficiency for three runs, where the orange, green and blue dots 
are the three different measurement by the average current monitor (ACM), Toroid, and Booster Q-meter, respectively.

 

 
Figure 2: Histograms of the vertical BPM readings on BPM 
1 and 2 (top row) and the last two vertical steering magnets 
(B8V and B9V) for the three runs (2017, 2018, and 2019). 
Areas under each curve are normalized to 1.0. 

 
Figure 3: Histogram of BL5 EPU (left) and BL15-IVU 
(right) gaps (in unit of mm). Areas under each curve are 
normalized to 1.0. 

The ambient air temperature and ground temperate are 
included in the analysis as they could drive trajectory shifts 
in various ways. In the course of a 9-mon run, the ground 
temperature varies for about 10 °C, while the air tempera-
ture changes by up to 40 °C (see Fig. 4). The 2019 run data 
cover 42 days, starting from late October, 2018.  

 

 
Figure 4: Histogram of ambient air and ground temperature 
(horizontal axis in unit of °C). 

NN MODEL 
An NN model was built to map the monitor and control 

parameters and the environment parameters with the per-
formance measures. The predictive model could be used 
for performance stabilization and the discovery of root 
causes for any observed performance drifting.  

The fully connected forward NN has a single output, 
which is the injection efficiency, and 22 input variables, 
which include the horizontal and vertical readings of 5 up-
stream BPMs in the BTS (10 variables), horizontal and ver-
tical steering magnets in the downstream end of the BTS (7 
variables), the temperatures (2), and the undulator gaps and 
EPU phase (3). The upstream BPMs determine the initial 
conditions of the trajectory, which, combined with the 
downstream steering magnets give the launching orbit of 
the injected beam into the storage ring. The results are sim-
ilar if the downstream BPMs are included as input param-
eters.  

About 63.8% of all data points are used for the training 
of the NN. Another 27.4% are used for the validation of the 
model. The rest of the data points are used for testing. The 
test data contain 20 blocks of history data, each block is 2 
days of continuous of operation. The blocks are evenly dis-
tributed. Thus, we have 40 days of data for test and exclu-
sive from training.  

The NN model consists of 5 layers of networks. The first 
layer being a Recurrent NN (RNN). The 2nd through the 4th 
layers are Convolutional NN (CNN). The 5th layer is the 
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output. There are a total of 5611 training parameters. A fi-
nite drop rate is adopted to improve the model reliability in 
some layers.  

The trained NN model fits the data very well. The stand-
ard deviation of prediction errors for the validation data is 
3.4%. For the test data the standard deviation is 4.4%. Fig. 
5 shows the comparison of the model predicted injection 
efficiency and the history data for the test data set.  

 
Figure 5: comparison of the injection efficiency predicted 
by the model and the history data, where the light blue, 
blue, and orange lines are for the raw data, processed data, 
and model prediction, respectively. 

APPLICATION 
The ability to use the trained NN model to make predic-

tions of the performance measure with a given set of input 
parameters is useful in many scenarios. One application is 
to discover the hidden connections between the environ-
ment parameters and the performance measures. In our 
case, the goal is to find out how the injection efficiency de-
pends on the environment variables, such as ID gaps and 
temperatures.  

The approach we took is essentially to calculate the par-
tial derivative of the output parameter of the NN with re-
spect to the environment parameters. Figure 6 shows the 
change of the injection efficiency predicted by the model 
when an environment parameter is changed by 10% and all 
other parameters are fixed. The three curves represent the 
partial derivative for the air temperature, ground tempera-
ture, and BL5 EPU gap, respectively. The ground tempera-
ture causes the biggest variation to the output parameter, up 
to 30% in the injection efficiency. 

The environment variables typically vary slowly and 
their impact to the performance measure could be small 
compared to that of the other parameters. In addition, the 
performance measure parameter, such as the injection effi-
ciency data, can be noisy. Therefore, it would be difficult 
to detect the small dependence on the environment param-
eters directly from the data.  

After the ground temperature is identified to be an envi-
ronment parameter with a large impact, we studied the de-
pendence of the ideal trajectory on the parameter. The 
ground temperature is first divided into 1°C zones. Within 
each zone, we used to the NN model to find the data points 
with the top 10% injection efficiency. The distribution of 
the corresponding trajectory readings on each BPM can 
then be used to determine the ideal trajectory.  

 
Figure 6: The relative output variation by the NN model 
with a 10% variation of an individual input, including the 
air temperature (blue), ground temperate (orange), and 
EPU gap (green). 

 
Figure 7: the dependence of the ideal BTS trajectory on the 
ground temperature. 

Figure 7 shows the variation of the ideal BTS trajectory 
vs. the ground temperature at the 9 BPMs.  

CONCLUSION 
An NN model has been successfully used to analyze the 

injection efficiency history data of a storage ring and its 
dependence on the transport line steering and the environ-
ment variables. From the analysis, it is discovered that the 
ground temperature drives the slow drift of injection effi-
ciency. The ideal orbit as a function of the ground temper-
ature is also determined. The method may be integrated 
with the transport line trajectory feedback to stabilize the 
injection performance. The method of data analysis with 
NN model may be extended to more complex application 
scenarios. 
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