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Abstract
Nonlinear integrable optics was recently proposed as a

design approach to increase the limits on beam brightness
and intensity imposed by fast collective instabilities. To
study these systems experimentally, a new research electron
and proton storage ring, the Integrable Optics Test Accelera-
tor, was constructed and recently commissioned at Fermilab.
Beam-based diagnostics and online modelling of nonlinear
systems presents unique challenges - in this paper, we re-
port on our efforts to develop optimization methods suited
for such lattices. We explore the effectiveness of neural
networks as fast online surrogate estimators, and integrate
them into a beam-based tuning algorithm. We also develop
a method of knob dimensionality reduction and subsequent
robust multivariate optimization for maximizing key perfor-
mance metrics under complicated lattice optics constraints.

INTRODUCTION
High intensity accelerators with strong space charge ef-

fects often exhibit current-limiting collective instabilities. A
novel mitigation approach proposed by Danilov and Nagait-
sev [1] is to suppress these with nonlinear integrable optics
(NIO) lattices, which produce strong amplitude-dependent
tune-shifts and hence, via Landau damping, prevent res-
onantly coupling energy into the beam. Previously, such
tune-shifts were achieved with standalone elements like oc-
tupoles [2] at the cost of dynamic aperture degradation [3],
a disadvantage that NIO mitigates. However, NIO lattices
impose a number of linear and nonlinear optics constraints
that must be carefully met and maintained, making conven-
tional tuning techniques insufficient or difficult to apply. In
this paper, we present several exploratory efforts to design
more suitable methods, and study applicability of recently
proposed machine learning approaches [4, 5].

Integrable Optics
An ideal strong-focusing lattice is a linear system that has

no amplitude-dependent tune shifts and is fully integrable.
Due to misalignments, field errors, and the need to correct
chromaticity and induce tune spread, real accelerators have
significant nonlinearities which break integrability. Their set
of initial conditions with regular motion is limited to a finite
region, called the dynamic aperture (DA) - preserving its
size is critical for achieving good accelerator performance.

∗ This work was supported by the U.S. National Science Foundation under
award PHY-1549132, the Center for Bright Beams. Fermi Research
Alliance, LLC operates Fermilab under Contract DE-AC02-07CH11359
with the US Department of Energy.

† nkuklev@uchicago.edu

Mathematically, the Hamiltonian for transverse particle dy-
namics is

H =
1
2

(
Kx(s)x2 + Ky(s)y2 + p2

x + p2
y

)
+ V(x, y, s)

with Kz=x,y being the linear focusing strength, and V(x, y, s)
containing any nonlinear terms (in general dependent on
time (≡ s) and transverse (x, y) position). DN approach is
to seek solutions for V that yield two invariants of motion
and are implementable with conventional magnets. First in-
variant comes from appropriate time scaling of V(x, y), such
that it becomes a time-independent potential U(xN , yN ) in
normalized coordinates. It is furthermore possible to derive
a specific form of U(xN , yN ) that yields second invariant of
motion I, which we omit for brevity. Such system is both
nonlinear and fully integrable, with ideally infinite DA.

Practical Implementation
Above derivation implicitly imposed several lattice con-

straints - such as the need to remove chromaticity, which
in turn introduces unaccounted sextupolar nonlinearities.
Within the nonlinear region, there should be no dispersion
and β-functions must be equal. Finally, the rest of the ring
must have phase advance be a multiple of 2π and have a
first-order transport matrix of a thin, axially symmetric lens.
For fully integrable case, these conditions must be met with
high precision (i.e. 1% β-beat) to maintain integrability [6],
but are relaxed by about an order of magnitude for a system
with only 1 invariant [7]. Such a lattice, as implemented in
IOTA, is shown in Fig. 1.

Figure 1: Half of IOTA lattice at working point Qx,y=5.3.
All units in meters, βx,y on the left, Dx on the right. Lattice
is mirror symmetric across 20m marker.

Realistically, due to field imperfections, magnet misalign-
ments, and the unavoidable approximation of continuous
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DN potential with discrete elements, perfect integrability is
never achieved. The goal of nonlinear lattice optimization
is to minimize invariant deviations (∆H/H and ∆I/I) and
bring the system as close as possible to being integrable, cor-
responding to maximums in DA and achievable tune spread.

METHODS

For the following discussion, IOTA ring in 100MeV 1NL
configuration with octupole single-invariant insert is used,
since this setup was extensively characterized during run 1.
However, proposed techniques are applicable to any NIO
ring, since IOTA lattice is the hardest case with no superpe-
riodicity or magnet family simplifications. All simulations
are done with symplectic tracking in ‘elegant’, with PyTorch
and scikit-learn libraries used for data analysis.

Linear Optics
Linear optics correction is a standard procedure, typically

done using linear optics from closed orbit (LOCO) approach,
whereby lattice functions and alignment are determined from
beam orbit responses. At IOTA, this is performed with an
in-house DAQ and analysis tool ‘6dsim’ [8]. For present
study, we simply assume starting lattice state has similar
random errors to what was observed during run 1.

Knob Selection
Light sources typically contain only a few independently

controllable sets of parameters, or ‘knobs’, since magnets by
design are tied into families, and moreover the majority of
adjustment margin is taken up by overriding requirements
like low emittance [9]. In case of IOTA however, magnets
are individually powered. Each mirror symmetric half has
19 normal and 10 skew quadrupoles, as well as 6 sextupoles
and multiple correctors, in addition to 17 octupoles within
the left and 18 DN magnet within the right inserts [10].

Such high knob count is excessive and highly degenerate,
and we first seek to reduce it. A natural starting point is to tie
elements into symmetric L/R pairs, such that any optimiza-
tion affects both nonlinear regions. Further reduction can be
achieved by calculating response matrices R for the parame-
ters of interest (tune, chromaticity, etc.). For example, using
singular value decomposition R = USVT, null space basis
vectors (combinations that don’t affect the parameter) can
be obtained as those in V that have near-zero singular values.
However, this approach is not suitable for tunes since it does
not take into account the NIO constraints. Instead, we used
multi-objective hybrid simplex optimization to derive a set
of nominally orthogonal knobs - phase advance inside and
outside the nonlinear regions, as well the longitudinal loca-
tion of β∗ for a total of 3x2=6 knobs. These were verified to
be near independent in the small region of interest studied,
allowing for straightforward linear combinations. A full list
of derived knobs is given in Table 1.

Table 1: Parameter Ranges and Knob Counts

Parameter Range Knob count

µx,y (insert) 0.3 ± 0.02 2
µx,y (ring) 5.0 ± 0.02 2
β∗ (z) 0±10 cm 2
ξx,y 0 ± 0.1 2-6
κ (skew quads) 0 − 0.01 2-9
INL ±5%(∼ 0.1A) 9-18
H,V (correctors) n/a 28

Online Model
Using above knobs, a sparse simulation set was created,

with 11 points spanning the adjustment range of each pa-
rameter, and even more sparse cross-term sampling. Several
figures of merit were extracted - DA area, minimum DA
ellipse, and invariant jitter. Then, a surrogate model was
trained which could achieve good agreement within this re-
gion of interest. It consisted of a simple, dense multi-layer
perceptron with 5 hidden layers of 25 nodes, and ReLU
activations. Input parameters were knob settings, normal-
ized and scaled appropriately, with typical total count of
∼ O(10). Approximately 1000 samples, or 10% of data,
were held back and used to verify the predictive accuracy.

Optimization
Various optimization goals have been reported in litera-

ture, such as canceling lowest order resonant driving terms
(RDTs) [11], reducing amplitude-dependent tune shifts [12],
or optimizing DA directly [13]. Of these, only the latter is
suitable for NIO due to the inherently nonlinear conditions,
and is taken as the starting point for our approach.

Many multi-dimensional optimization strategies are avail-
able - gradient descent, genetic algorithms, particle swarm
optimization, Nelder-Mead simplex, and others. All of these
require large number of evaluations and are susceptible to
noise in experimental data. Modifications of Powell’s and
simplex methods, called robust conjugate direction search
(RCDS) [14] and robust simplex [15] respectively, were
recently shown by X. Huang to improve noise robustness
and improve convergence rate. However, they still require
a somewhat large number of samples at each iteration. An
NIO measurement involves at least several beam pings to
determine DA and reconstruct invariants, each taking around
5-10 seconds due to slow damping time. With 5 − 7 eval-
uations per knob, and at least 15 knobs (see Table 1), the
required measurement times become unacceptable. Some
recent work used global SVD [16] for a further dimensional-
ity reduction, but it is not applicable here since the objective
function is nonlinear, and in any case most degeneracy has
already been eliminated with judicious knob choices.

One straightforward improvement is pre-setting optimal
initial search directions/simplex values. In RCDS, these
must satisfy the ‘conjugate’ condition, u · H · v = 0, with
Hessian matrix Hi j = ∂

2 f /∂xi∂xj encoding relationship
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between objective function f and the knobs x = x1, x2, ....
However, once optimization is started, search directions are
only modified based on measurements, without any use of
a priori knowledge about the objective function landscape.
This is especially disadvantageous for nonlinear systems,
where initial search directions will not be universally optimal.
Our proposed method, NN-RCDS, seeks to address this
drawback by adding a neural network heuristic to improve
search vectors and step sizes dynamically, based on model
training and past history.

Specifically, for each iteration, we adjust initial bracketing
step size and primary conjugate search direction based on
weighted average of NN and naive algorithm values. To
train the NN, which had similar MLP architecture as before,
we used the above surrogate model to evaluate the invariant
jitter cost function, thereby enabling fast simulated optimiza-
tion runs, avoiding ∼ 10 CPU-minutes/point that would have
been otherwise required. About 10k runs from random start-
ing conditions were performed, and 10% of data was kept
back for testing.

RESULTS
Online Model

Parameter ranges were chosen to match experimental re-
gion of interest from run 1, as detailed in Table 1. However,
we held chromaticity fixed and pre-corrected orbit offsets
and coupling, since these parameters have only a weak effect
on the octupole NIO system. Two specific types of simu-
lations were performed - dynamic aperture size search and
particle invariant tracking. For all runs, random but opti-
mistic misalignment errors were introduced to all dipoles
and quadrupoles, and results averaged over 10 seeds.

The resulting surrogate model accuracy on test set is
shown in Figs. 2 and 3. Note that performance was sig-
nificantly better for invariant jitter, with DA determination
quite noisy due to inherent resolution limits and stochas-
tic nature of the DA search algorithm used for training set
creation.

Figure 2: DA area NN performance.

Figure 3: Invariant jitter NN performance.

Online Correction
We evaluated NN-RCDS with separate NNs for step size

scaling and direction prediction, finding MLP only suitable
for the former task. Its performance in a typical run on 9D
parameter space is shown in Fig. 4, with iteration 0 being
first optimized step. Overall, convergence speed to same
absolute error level is improved by about a factor of two,
requiring ∼500 evaluations to reach 10−2 MSE as compared
to 1000 evaluations for naive RCDS.

Figure 4: RCDS convergence comparison.

SUMMARY AND FUTURE PLANS
We have presented an algorithm for online tuning of

nonlinear integrable systems based on neural network aug-
mented RCDS optimizer and a surrogate training model.
Model accuracy was demonstrated to be very good for criti-
cal parameter of invariant jitter, but had significant noise in
DA prediction due to training set deficiencies. NN-RCDS
runs with surrogate model objective function and experi-
mentally observed lattice parameters have shown factor of
two faster convergence, while maintaining good noise rejec-
tion. We are exploring further improvements through use
of recurrent neural networks, plan to extend our work with
novel applications of convolutional generative networks for
more complete, 2D (FMA, etc.) surrogate modeling and
optimization.

North American Particle Acc. Conf. NAPAC2019, Lansing, MI, USA JACoW Publishing
ISBN: 978-3-95450-223-3 ISSN: 2673-7000 doi:10.18429/JACoW-NAPAC2019-TUYBB4

TUYBB4
320

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I

06: Beam Instrumentation, Controls, Feedback and Operational Aspects



REFERENCES
[1] V. Danilov and S. Nagaitsev, “Nonlinear accelerator lattices

with one and two analytic invariants,” Phys. Rev. Spec. Top.
Accel Beams, vol. 13, p. 084002, 2010.

[2] J. Gareyte, J.-P. Koutchouk and F. Ruggiero, “Landau Damp-
ing, Dynamic Aperture and Octupoles in LHC”. LHC Project
Report 91. http://cds.cern.ch/record/321824

[3] D. Amorim et al., “Single-beam transverse collective effects
for HE-LHC", ICFA Beam Dyn. Newslett. vol. 72, pp. 151-
174, 2017.

[4] A. Edelen and C. Mayes, editors, “Opportunities in Machine
Learning for Particle Accelerators", arXiv:1811.03172

[5] A. Edelen et al., “Machine Learning to Enable Orders of Mag-
nitude Speedup in Multi-Objective Optimization of Particle
Accelerator Systems", arXiv:1903.07759

[6] S. Antipov et al., “IOTA (Integrable Optics Test Accelerator):
facility and experimental beam physics program," J. Instrum.,
vol. 12, p. T03002, 2017.

[7] N. Kuklev, Y. K. Kim, A. L. Romanov, and A. Valishev,
“Experimental Studies of Single Invariant Quasi-Integrable
Nonlinear Optics at IOTA”, presented at the North American
Particle Accelerator Conf. (NAPAC’19), Lansing, MI, USA,
Sep. 2019, paper TUPLM08, this conference.

[8] A. Romanov et al., “Correction of magnetic optics and beam
trajectory using LOCO based algorithm with expanded ex-
perimental data sets", arXiv:1703.09757

[9] Y. Li, W.X. Cheng, L.-H. Yu, and R.S. Rainer, “Genetic
algorithm enhanced by machine learning in dynamic aperture

optimization", Phys. Rev. Spec. Top. Accel Beams, vol. 21, p.
054601, 2018.

[10] A. L. Romanov et al., “Recent Results and Opportunities at
the IOTA Facility”, presented at the North American Parti-
cle Accelerator Conf. (NAPAC’19), Lansing, MI, USA, Sep.
2019, paper WEXBA2, this conference.

[11] A. Franchi et al. “First simultaneous measurement of sex-
tupolar and octupolar resonance driving terms in a circular
accelerator from turn-by-turn beam position monitor data",
Phys. Rev. Spec. Top. Accel Beams, vol. 17, p. 074001, 2014

[12] R. Bartolini, I. P. S. Martin and G. Rehm, “Calibration of the
nonlinear ring model at the Diamond Light Source", Phys.
Rev. Spec. Top. Accel Beams, vol. 14, p. 054003, 2011

[13] X. Huang and J. Safranek, “Online optimization of storage
ring nonlinear beam dynamics", Phys. Rev. Spec. Top. Accel
Beams, vol. 18, p. 084001, 2015.

[14] X. Huang, J. Corbett, J. Safranek, and J. Wu, “An algorithm
for online optimization of accelerators", Nucl. Instrum. Meth-
ods Phys. Res., Sect. A vol. 726, pp. 77-83, 2013.

[15] X. Huang, “Robust simplex algorithm for online optimiza-
tion", Phys. Rev. Spec. Top. Accel Beams, vol. 21, p. 104601,
2018.

[16] W. F. Bergan et al., “Online storage ring optimization using
dimension-reduction and genetic algorithms", arXiv:1807.
10720

North American Particle Acc. Conf. NAPAC2019, Lansing, MI, USA JACoW Publishing
ISBN: 978-3-95450-223-3 ISSN: 2673-7000 doi:10.18429/JACoW-NAPAC2019-TUYBB4

06: Beam Instrumentation, Controls, Feedback and Operational Aspects
TUYBB4

321

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I


