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Abstract

The performance of microbunched electron cooling

(MBEC) [1] is highly dependent on the quality of the hadron

and cooler electron beams. As a result, understanding the

influence of beam imperfections is very important from the

point of view of determining the tolerances of MBEC. In

this work, we incorporate a non-zero average energy offset

into our 1D formalism [2, 3], which allows us to study the

impact of effects such as correlated energy spread (chirp).

In particular, we use our analytical theory to calculate the

cooling rate loss due to the electron beam chirp and discuss

ways to minimize the influence of this effect on MBEC.

INTRODUCTION

In MBEC, the hadron beam imprints an energy modu-

lation on the co-propagating cooler electron beam in the

modulator section of the machine. This energy modulation

is then converted into a density modulation (bunching) after

the e-beam passes through a dispersive chicane with strength

R(e,1)
56

(Fig. 1). In the meantime, the hadrons go through a

separate section of the lattice, which also includes a chicane

with strength R(h)
56
. The bunched electron beam then once

again interacts with the hadrons in the kicker section, in a

way that can ultimately lead to a significant reduction in the

hadron energy spread (cooling of the transverse emittance is

also possible but, for simplicity, we neglect this effect in this

work). In order to accelerate this process and ensure that the

cooling timescale is small enough for practical purposes, ad-

ditional amplification stages are typically required, in which

the bunching of the electron beam is boosted through plasma

oscillations. Each such plasma stage consists of a drift space

followed by a chicane of strength R(e, j)
56

( j = 2, ...,M + 1,
where M is the total number of stages). For simplicity, we

will assume that all stages have the same length Ld. In

Refs. [2, 3] we derived the cooling timescale using a tech-

nique that tracks the microscopic fluctuations in the hadron

and electron beams. The main results can be summarized

as follows: the characteristic cooling time for the energy

spread Nc — normalized by the ring revolution period T —

is given by 1/Nc = A0I, where

A0 =
4IeLmLkrh
Σ3πγ3IAσeσh

×
(
1

σe

√
2Ie
γIA

)M
(1)
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is a pre-factor and the cooling integral I is expressed by

I = (−1)M × 2qhqe,1qe,2...qe,M+1

∫ ∞

0

d��2H2(�)
× exp(−�2(q2h + q2e,1 + q2e,2 + ... + q2e,M+1)/2)

×
(�H(rp�)

rp

)M/2
sinM (rp

ΩpLd

c

√
2�H(rp�)

rp
) . (2)

In the expressions given above, γ is the relativistic factor
(common for the co-propagating hadron/electron beams),

Lm and Lk are the lengths of the modulator and kicker sec-

tions, rh = (Ze)2/mhc2 is the classical radius of the hadrons,
Ie is the electron beam current and IA = mec3/e ≈ 17 kA is

the Alfven current. Moreover, σh and σe are, respectively,
the rms energy spread values for the hadron and electron

beams (assuming a Gaussian energy distribution for both).

As far as the transverse properties of the beams are con-

cerned, we again adopt Gaussian profiles and assume that a)

at the modulator and kicker, the interacting beams have an

identical, circular cross section characterized by an rms size

Σ b) at the plasma stages, the e-beam is also round but with a

different rms size rpΣ, where rp is a dimensionless squeeze
factor. The latter quantity is also involved in the definition

of the plasma oscillation frequency Ωp, which is given by

Ωp = (c/rpΣ)(Ie/γ3IA)1/2. In Eq. (2), qh = R(h)
56
σhγ/Σ is

the scaled hadron chicane strength and qe, j = R(e, j)
56
σeγ/Σ

are the normalized strengths of the various electron chicanes.

Lastly, the important function H(k̂), which is directly related
to the Fourier transform of the space charge interaction func-

tion, is defined by H(k̂) = k̂
∫ ∞
0

dττ exp(−k̂2τ2/4)/(τ2+4).

ENERGY ERROR
In the derivation of Eq. (2), we have assumed a zero central

value for the electron energy variable. In what follows, we

discuss what would change if we were to remove this assump-

tion. To begin with, we stipulate that the energy deviation of

the electron beam, Δη, does not change the interaction be-
tween hadrons and electrons in the modulator and the kicker.

It does, however, shift the wake generated by a hadron in the

electron beam relative to the case when both beams have the

same γ. If no plasma stages are present, the longitudinal shift

= / = /
( )

( ) ( ) ( )
+ +
_ _

Figure 1: MBEC configuration with two plasma stages (the

length Ld is a free parameter but, in practice, its value is

∼ λp , where λp is the plasma wavelength).
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of the wake is equal to Δz = Re,1Δη. For the dimensionless
coordinate γΔz/Σ we have γΔz/Σ = qe,1(Δη/σe) ≡ qe,1Δp,
where we recall that qe,1 = R(e,1)

56
σeγ/Σ. The shift of the

wake adds a phase factor to the space charge impedance

Z(�), according to
Z(�) → Z(�)e−i�qe ,1Δp . (3)

Hence, in our cooling calculations we should use this mod-

ified impedance, instead of the original one derived in [2].

Correspondingly, instead of Eq. (66) in the above-mentioned

reference (or, equivalently, Eq. (2) for M = 0), we need to
calculate the factor I(qh,qe,1,Δp) given by

I(qh,qe,1,Δp) = 2qe,1qh

×
∫ ∞

0

d��2e−�
2(q2

e ,1
+q2

h
)/2H2 (�) cos(�qe,1Δp). (4)

The plot of this function — normalized by its value at the

origin (no energy error) — for qe,1 = qh = 0.6 is shown in
Fig. 2.

/

Figure 2: Plot of I/I0 (I0 is the value of I at the origin)
versus Δp.

From this figure it follows that the relative energy devi-

ation of 0.7σe leads to 23% loss of the cooling rate. This

imposes a tolerance on the energy jitter of the electron beam.

LINEAR, QUADRATIC AND CUBIC
ENERGY CHIRP

We now consider three different cases of correlated energy

spread (chirp). If we have a linear chirp in the electron beam,

i.e. Δη(z) = h1z (where z is the position within the beam),
we will characterize it with an rms value of the correlated

energy variation, Δηrms. The latter is given by

Δη2rms =

∫ ∞

−∞
(h1z)2Fe(z)dz = h21σ

2
z , (5)

where Fe(z) = exp(−z2/2σ2z )/(
√
2πσz) is the longitudinal

distribution function in the electron beam (normalized by

unity) and σz is the rms electron bunch length. Thus, the
chirp profile can be re-written in scaled units as

Δp(z) = Δprms
z
σz
, (6)

where Δprms = Δηrms/σe. For the case of a quadratic chirp,
we instead have Δη(z) = h2z2, so that

Δη2rms =

∫ ∞

−∞
(h2z2)2Fe(z)dz = 3h22σ

4
z (7)

and the chirp profile becomes

Δp(z) = 1√
3
Δprms

z2

σ2z
. (8)

Finally, for a cubic chirp of the form Δη(z) = h3z3 we have

Δη2rms =

∫ ∞

−∞
(h3z3)2Fe(z)dz = 15h23σ

6
z (9)

and the scaled chirp profile is

Δp(z) = 1√
15
Δprms

z3

σ3z
. (10)

For all three cases, the relative cooling rate for a given

Δηrms is defined by

ηchirp =

∫ ∞

−∞
Fe(z) 1I0

I
(
qh,qe,1,Δp(z)) dz , (11)

where I0 =
∫ ∞
−∞ Fe(z)I

(
qh,qe,1,0

)
dz = I

(
qh,qe,1,0

)
.

Here, we have used the fact that the cooling rate 1/Nc in

a system without amplification is proportional to the local

current (see Eqs. (1) and (2) for the M = 0 case). The plot
of ηchirp for qh = qe,1 = 0.6 is shown in Fig. 3.
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Figure 3: Relative cooling rate versus Δprms for three differ-
ent chirp profiles (no plasma stages).
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ADDING PLASMA STAGES
When plasma stages are included, the amplification factor

for a single stage is modified according to

gj(�) → gj(�)e−i�qe , jΔp , (12)

where qe, j is the scaled chicane strength of the plasma sec-
tion (see Eq. (25) in [3]). For a single plasma stage, the total

multiplication factor for the impedance is

e−i�(qe ,1+qe ,2)Δp , (13)

which can be made equal to unity by selecting qe,1 = −qe,2
(in fact, this case corresponds to the optimum solution with-

out chirp). Thus, it appears that the single-stage case can be

made insensitive to e-beam chirp by making the sum of the

electron chicane strengths equal to zero.

Assuming two plasma stages with qh = qe,1 = qe,2 =
qe,3 = q > 0, the total phase factor that multiplies the

impedance is

e−i�(qe ,1+qe ,2+qe ,3)Δp = e−3i�qΔp . (14)

Following the treatment of [3], we can conclude that the

phase term of Eq. (14) introduces a multiplicative factor

cos(3�qΔp) in the integrand of the �-integral. Thus, in view
of Eqs. (1) and (2) for M = 2, the modified cooling integral
becomes

I(q,Δp, Ie) = 2q4

rp

∫ ∞

0

d��3e−2�2q2H2(�)H(rp�)

× sin2(l(Ie)
√
2�H(rp�)

rp
) cos(3�qΔp) , (15)

where we have emphasized the dependence of the dimen-

sionless parameter l ≡ rpΩpLd/c on the electron current Ie
(in fact l ∝ I1/2e ∝ F1/2

e ). In view of this change, we redefine

the relative cooling rate according to

ηchirp =

∫ ∞
−∞ F2

e (z)I (q,Δp(z), Ie(z)) dz∫ ∞
−∞ F2

e (z)I (q,0, Ie(z)) dz
, (16)

where we have taken into account the fact that the pre-factor

of the cooling rate is now ∝ I2e (according to Eq. (1)). The
new tolerances are plotted in Fig. 4. For this plot, we have

assumed lmax = 1.0 and q = 0.3 for a squeeze factor rp = 0.2
(as in [3]). As before, the losses are less severe for quadratic

and cubic chirp than they are for linear chirp.

Finally, we consider an alternative configurationwith qh =
qe,1 = q > 0 and qe,2 = qe,3 = −q < 0. In the absence

of chirp, this would yield the same cooling time as before.

The new impedance phase factor is e−i�(qe ,1+qe ,2+qe ,3)Δp =
ei�qΔp and the modified cooling integral becomes

I(q,Δp, Ie) = 2q4

rp

∫ ∞

0

d��3e−2�2q2H2(�)H(rp�)

× sin2(l(Ie)
√
2�H(rp�)

rp
) cos(�qΔp) . (17)
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Figure 4: Relative cooling rate versus Δprms for the three
different chirp profiles (two plasma stages, case I with all

chicane strengths positive).
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Figure 5: Relative cooling rate versus Δprms for the three
different chirp profiles (two plasma stages, case II with two

negative chicane strengths).

The relative rates for this case are plotted in Fig. 5 (for the

same q, lmax). This configuration has better tolerances than
the previous case with two plasma stages, the cost being that

some of the electron chicane strengths have to be negative.

CONCLUSIONS

We have studied the sensitivity of MBEC performance

with respect to a non-zero average value of the electron

energy variable. In particular, we have incorporated the

average energy deviation effect into our frequency-domain

formalism, a manipulation that allows us to determine the

cooling timescale in the presence of electron beam chirp.

From our numerical study, we establish that, even though

the chirp does result in a loss of cooling rate, this reduction

in performance can be mitigated by minimizing the sum of

the electron chicane strengths (in an absolute value sense).

This conclusion is in line with a similar observation in [1].
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